Электрические цепи. Основы теории электрических цепей

02.05.2019

ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Истоками теории электрических цепей в качестве раздела ТЭ в значительной мере являются технические задачи передачи и распространения энергии и анализ режимов в электрических цепях. В этом разделе теории наиболее остро встали проблемы создания математических моделей реальных устройств. Для относительно простых электрических цепей постоянного тока топология цепей и их эквивалентных схем совпадали и, таким образом, математические модели цепей

и эквивалентные им идеальные цепи, представленные в виде электрических схем, были тождественны. Но даже в этих простых моделях и эквивалентных им схемах нашли отражение принципы перехода от ЭМП с распределенными в пространстве и во времени векторами напряженностей электрического Е и магнитного Н полей к идеализированным цепям с сосредоточенными параметрами (R, L, С) и интегральными величинами (токи, напряжения, заряды и потоко‑сцепления). Именно при расчете параметров эквивалентных схем наиболее полно выявилась неразрывная связь между задачами теории ЭМП и физическими и математическими проблемами создания математических моделей. Например, практика передачи сигналов при помощи азбуки Морзе показала существенное влияние длины линии связи на уровень сигнала. Особенно остро эта проблема встала при попытке осуществить трансатлантическую телеграфную связь в середине XIX в. Решению этой проблемы способствовало понимание физической природы этого явления, связанного с особенностями временных и пространственных изменений токов и напряжений линии, на основе которого и были сформулированы уравнения в частных производных, названные телеграфными или волновыми. Несмотря на то обстоятельство, что теория электрических цепей с распределенными параметрами в середине XIX в. родилась для решения специфических задач линий связи, понятия бегущих, отраженных, преломленных волн и волнового сопротивления в середине XX столетия вошли также в теорию четыреполюсников, электрических фильтров, цепных схем, формирующих формы сигналов цепей и др. Решение ряда задач, для которых была характерна необходимость более детального описания ЭМП в реальных устройствах, также было связано с формированием математических моделей в форме телеграфных уравнений. Методы решения таких уравнений были использованы для расчета волновых процессов в электрических машинах, трансформаторах, ЛЭП. Разработанный в ТЭ математический аппарат, методы и понятия для расчета распространения электромагнитной волны в цепях с распределенными параметрами дали возможность практически с одних и тех же позиций исследовать процессы и в миниатюрных слаботочных интегральных схемах и в охватывающей всю страну сильноточной ЕЭС.

Важным в теории электрических цепей является раздел, относящийся к расчету и анализу установившихся и переходных процессов в линейных цепях (ЛЦ) с сосредоточенными параметрами. Математические модели реальных устройств, как правило, являются упрощенными, идеализированными образами исходных физических процессов. Степень соответствия этих образов исходным зависит от уровня понимания физических процессов и возможности математически строго и достаточно полно учитывать характерные особенности процессов и свойств сред. Математические модели физических процессов в реальных системах в основном характеризуются нелинейными уравнениями. Одной из основных задач ТЭ в течение первой половины XX в. являлась разработка методов создания математических моделей. Для этого необходимо было правильное понимание картины протекания физических процессов. По этой причине в ТЭ большое место занял раздел под названием «Физические основы электротехники». В развитии этого раздела большой вклад внесла отечественная школа теоретических основ электротехники, созданная В.Ф. Миткевичем, К.А. Кругом, Л.Р. Нейманом, П.Л. Калантаровым, К.М. Поливановым, А.В. Нетушилом и их учениками. Были выработаны критерии, позволяющие для большого количества реальных устройств и режимов их работы выделить такие математические модели, которые в первом приближении допускают линеаризацию и описываются системой дифференциальных уравнений с постоянными коэффициентами. Сочетание методов решения таких уравнений и метода последовательных приближений применительно к линеаризованным моделям дало возможность отыскать более точные решения нелинейных задач для устройств, математические модели которых описывались нелинейными уравнениями.

Развитие методов расчета ЛЦ происходило в течение всего XX в., первоначально преимущественно для цепей с периодическими токами и напряжениями и простых цепей при ЭДС, несинусоидальной формы кривой. Предложенный Ч.П. Штейнмецем метод использования комплексных чисел для расчета установившихся процессов в цепях с синусоидальными токами и напряжениями в сочетании с разложением периодических несинусоидальных функций в ряд Фурье стал основным инструментом для расчета ЛЦ. В России и СССР основными пропагандистами этих методов стали К.А. Круг, В.Ф. Миткевич, Г.Е. Евреинов, А.И. Берг и др. Применение комплексного метода позволяло алгебраизировать интегродифференциальные уравнения и производить расчеты сложных электрических цепей. В связи со скромными возможностями используемых до середины 50‑х годов технических средств вычислений (логарифмические линейки, механические счетные устройства) большое значение приобрели методы, позволяющие снизить порядок уравнений. Наряду с предложенным еще Д.К. Максвеллом методом контурных токов и узловых напряжений в практику расчетов были введены методы эквивалентного генератора, симметричных составляющих, эквивалентных преобразований и др. Существенное развитие теории линейных систем и электрических цепей связано с описанием динамических процессов в них при помощи метода переменных состояния (Т. Башков, Л. Заде, Ч. Дезоер, Ю.В. Ракитский, К.С. Демирчян, В.Г. Миронов, П.Н. Матха‑нов, П.А. Бутырин и др.), позволившего более продуктивно использовать классические математические формы описания системы дифференциальных уравнений (уравнения Коши) и возможности ЭВМ. По мере усложнения конфигурации электрических цепей для расчета установившихся процессов в сложных электрических цепях были предложены методы расщепления цепей на четырехполюсные и многополюсные подцепи (Э.В. Зелях, 1931 г.; Г.Е. Пухов, 1949 г.; Р.А. Воронов, 1951 г.; В.П. Сигорский, 1954 г.; Г.Т. Адонц, 1951 г. и др.) с привлечением новых разделов тензорного анализа (Г. Крон), диакоптики (Г. Крон, А.З. Гамм, Л.А. Крумм, И.А. Шер, М.А. Шакиров, О.Т. Гераскин, В.А. Строев и др.) и матричной алгебры (В.П. Сигорский, А.И. Петренко, В.Г. Миронов и др.). Специфика расчета электрических цепей, особенно ЕЭС, породила новое направление в теории матриц, связанное с использованием особенностей слабозаполненных матриц для упрощения процедуры их обращения (Н. Сато и К. Тинней, 1963 г.). Методы обращения слабозаполненных матриц, разработанные в ТЭ с учетом возможностей ЭВМ, легли в основу специального раздела прикладной математики и оказались продуктивными и для других областей техники. Тождественность математических моделей и идеализированных электрических цепей позволила отыскать физические аналоги для различных математических процедур. Например, физически наглядно можно представить прямой и обратный ходы Гаусса, а также тензорный метод Крона с его элементарными контурами через процедуру сворачивания схемы электрической цепи при помощи представления влияния тока в одной ветви на напряжение другой через индуктивную связь (М.А. Шакиров). В электроэнергетике нашел широкое применение метод симметричных составляющих не только для расчета цепей, но также для создания аппаратуры с целью улучшения качества преобразования электрической энергии и создания теории и методов измерения мощности и электрической энергии (А.Н. Милях, А.К. Шидловский, И.М. Чиженко, Г.М. Торбенков, Ф.А. Крогерис и др.).



Для ТЭ характерно стремление разработать такие теоретические методы, которые обеспечивают возможность произвести качественный и количественный анализ результатов решения конкретной задачи. С этой точки зрения использование матричных методов без применения современных ЭВМ вплоть до 70‑х годов носило больше методический, чем прикладной характер. Именно стремление довести решение задачи до аналитических выражений для выяснения общих свойств решаемой задачи помимо получения численных результатов в 50‑х годах породило методы: матрично‑топологичёские (Л.Д. Кудрявцев, Э.А. Меерович, Э.В. Зелях, В.А. Тафт, В.П. Сигорский и др.), алгебраические (К.Т. Ванг, С. Беллерт, Г. Возняцки, Я.К. Трохименко, П.Ф. Хасанов) и сигнальных графов (С. Мэзон, Г. Циммерман П.А. Ионкин, и др.). Однако для цепей с большим количеством узлов и контуров расчеты, произведенные по этим методам для вычисления определителя матрицы и ее алгебраических дополнений, оказались громоздкими. На практике эти методы оказываются малопродуктивными для анализа электрических цепей, поскольку выражение для определителя цепи даже с шестью узлами при взаимном соединении всех узлов будет содержать 6 4 = 1296 слагаемых. Не намного более продуктивным оказался и метод сигнальных графов по тем же причинам. Однако эти методы сыграли важную методическую роль и позволили по‑иному формировать математические модели для многочисленных прикладных задач с уравнениями низкого порядка.

Важным новым направлением развития теории электрических цепей стала диагностика их параметров и состояния. Задачи, связанные с диагностикой, приобрели определяющее значение при управлении процессами в электрических цепях и системах. Особенно острыми они стали при организации диспетчерской службы ЕЭС страны для принятия оперативных решений по управлению эффективным распределением потоков электромагнитной энергии в ней.

Для решения этой задачи требуется знание текущего состояния системы т.е. ее структуры и параметров элементов системы, для чего и необходимо провести диагностику системы: определить путем измерений и расчетов параметры, необходимые для управления состоянием системы (или электрической цепи), и организовать проверку достоверности результатов диагностики. В решение этой проблемы заметный вклад внесли Н.В. Киншт, П.А. Бутырин, А.З. Гамм и др.

В теории линейных цепей особое положение занимают цепи с переменными во времени параметрами. Математический аппарат, пригодный для представления решения уравнений процессов в аналитической форме, существенно менее развит, чем таковой для линейных цепей, и в этом основная причина сложности создания пригодной для практики теории расчета процессов в таких цепях. Общие решения и анализ их свойств содержится во многих работах (в частности, Л. Заде и Ч. Дезоер «Теория линейных систем», К.С. Демирчян и П.А. Бутырин «Моделирование и машинный расчет электрических цепей», В.А. Тафт «Электрические цепи с переменными параметрами»). Исследованию специфических свойств таких цепей, в частности случаю периодичности изменения параметров цепей, посвящены многие работы. В таких цепях при помощи нахождения соответствующих преобразований иногда оказывается возможным свести их к цепям с постоянными параметрами. Этот случай характерен для описания процессов в электрических машинах (А.А. Горев).

Лекция №1

Лекция №1
Тема: «Основные
понятия теории
электрических
цепей»

Учебные вопросы

1. Введение.
2. Понятие об электрической цепи.
3. Основные электрические величины:
электрический ток, напряжение,
ЭДС, мощность и энергия.
4. Идеализированные пассивные
элементы. Схемы замещения реальных
элементов электрических цепей.
5. Идеализированные активные элементы.
Схемы замещения реальных источников.

Литература

1. Попов В.П. Основы теории цепей:
Учебник для вузов спец.
"Радиотехника".-М.: Высшая школа,
2007, с. 6-36.
2. Касаткин А.С., Немцов М.В.
Электротехника: Учебник для
студентов неэлектрических
специальностей вузов.–М.: Высшая
школа, 2003, с. 4-15.

Содержание и предмет дисциплины
«Теория электрических цепей»
Содержание дисциплины составляют задачи
анализ и синтеза линейных и нелинейных
электрических цепей, изучение как с
качественной, так и с количественной стороны
установившихся и переходных процессов,
протекающих в различных электронных
приборах и устройствах.
Предметом теории цепей является разработка инженерных
методов исследования процессов в электротехнических и
радиоэлектронных устройствах, основанных на замене этих
устройств упрощенными моделями, процессы в которых
описываются в терминах токов и напряжений.

Состав электрической цепи

ГОСТ Р52002-2003
«Электротехника.
Термины и
определения
основных понятий»
Электрическая
цепь
Электрическая цепь –
это
совокупность
устройств
и
объектов,
образующих
путь
для
электрического
тока,
электромагнитные
процессы в которых могут
быть описаны с помощью
понятий
об
электродвижущей
силе,
электрическом
токе
и
электрическом напряжении.
Источники
электрической
энергии
Приемники
электрической
энергии
Вспомогательные
элементы

Последовательное соединение
проводников
Принципиальная схема
Монтажная схема

Параллельное соединение
проводников
Принципиальная схема
Монтажная схема

Основные допущения и
принципы теории цепей
В теории цепей предполагается:
каждый элемент цепи полностью характеризуется
зависимостью между током и напряжениями на
его зажимах, при этом процессы, имеющие место
внутри элементов, не рассматриваются.
В основе теории электрических цепей
лежит принцип моделирования. В
соответствии с этим принципом реальные
элементы цепи заменяются их упрощенными
моделями, построенными из идеализированных
элементов.

Идеализированные двухполюсные элементы

ИДЭ
Идеальный
резистор
Идеальная
индуктивная катушка
Идеальный
конденсатор
Идеальный
источник
напряжения
Идеальный
источник
тока

Понятие об электрическом токе

Электрический ток проводимости – явление направленного
движения свободных носителей электрического заряда в
веществе или в пустоте, количественно характеризуемое
скалярной величиной, равной производной по времени от
электрического заряда, переносимого свободными
носителями заряда сквозь рассматриваемую поверхность.
q dq
i (t) lim
t 0 t
dt
q q
i(t) I const
t t
Постоянный электрический ток – это неизменное во времени
однонаправленное движение заряженных частиц (зарядов).
Условное положительное направление тока при расчетах
электрических цепей может быть выбрано совершенно
произвольно.

Электрические величины и единицы
их измерения
Мгновенное значение тока равно
скорости изменения заряда во
времени:
q dq
i lim
.
t 0 t
dt
Андре-Мари
Ампер 1775 - 1836
Единица измерения тока в системе СИ –
ампер (А).
Электротехника и электроника
Слайд 4
Довгун В.П.

Сила тока. Единицы силы тока. Амперметр.
Заряд, протекающий через данное поперечное сечение проводника в
единицу времени, характеризует электрический ток.
Ток в цепи измеряют специальным прибором - амперметром.
Схема включения: амперметр включается в электрическую
цепь последовательно с элементом, в котором он измеряет
электрический тока.
Амперметр - электрический прибор для измерения силы тока.
Амперметр
Амперметр
лабораторный технический
Амперметр
демонстрационный
АМПЕР Андре Мари
(22.I 1775 - 10.VI 1836)
французский физик,
математик и химик
Условное
обозначение на
схемах

Понятие о напряжении

1
A
А E dl FЭ dl
qA
q
A
B
Edl
B
В
u А B E dl
А
Электрическое напряжение между точками А и В электрической цепи
(или разность потенциалов точек А и В) – это работа
совершаемая силами электрического поля по перемещению
единичного положительного заряда по произвольному пути из
точки А в точку В поля и равная линейному интегралу
напряженности электрического поля.

Понятие о напряжении

w dw
u lim
q 0 q
dq
Напряжение между точками А и В электрической
цепи может быть определено как предел
отношения энергии электрического поля w,
затрачиваемой на перенос положительного
заряда q из точки А в точку В к этому заряду при
Единица измерения напряжения
в системе СИ – вольт(В).
q 0

Луиджи Гальвани (1737-1798)

Опыт Луиджи Гальвани с лапками лягушки

Алессандро Вольта(1745-1827)

Гальванический (или химический) элемент
Алессандро Вольта

Понятие об ЭДС

Электродвижущая сила –
скалярная величина,
численно равная работе
сторонних сил,
затрачиваемая на
перемещение единичного
положительного заряда
внутри источника от
зажима с меньшим
потенциалом к зажиму с
большим потенциалом.
Независимо от природы сторонних сил ЭДС источника
численно равна напряжению между зажимами источника
энергии при отсутствии в нем тока, т.е. в режиме холостого
хода.

Электрическое напряжение. Единицы
напряжения. Вольтметр
Вольтметр –
электрический
прибор для
измерения
напряжения.
.
Схема включения:
вольтметр включается в
электрическую цепь
параллельно тому
элементу, на котором он
измеряет напряжение.
Условное обозначение на
схемах
ВОЛЬТА Алессандро (1745-1827) итальянский
физик и физиолог
Вольтметр технический
Вольтметр
лабораторный
Вольтметр лабораторный

Понятие о мощности и энергии

w dw
u lim
q 0 q
dq
dw udq uidt
Энергия,
затрачиваемая на
перемещение
заряда:
dw dq dw
p ui
dq dt dt
q
w udq
0
t
uidt

Понятие о мощности и энергии

Мгновенная мощность
участка цепи:
dw
p
ui .
dt
t
w(t)
pdt
Мощность
измеряется в
ваттах (Вт)
Джеймс Уатт
1736 – 1819
Энергия
измеряется в
джоулях (Дж)
W w(t 2) w(t1)
t2
pdt
t1
Джеймс Джоуль
1818 – 1889

Экспериментальное определение мощности
электрического тока
P U I
1Вт 1В А

Электрическая цепь может быть потребителем и
источником энергии
При совпадении знаков
напряжения и тока мощность
положительна. Это
соответствует потреблению
энергии участком цепи.
При несовпадении знаков
напряжения и тока мощность
отрицательна. Это означает,
что участок цепи является
источником энергии.
p ui 0
p ui 0

Резистивный элемент
Резистивный элемент –
идеализированный элемент, в
котором происходит только
необратимое преобразование
электромагнитной энергии в
тепло и другие виды энергии.

Условное графическое обозначение и ВАХ резистивного элемента

Резистивный элемент
Вольт-амперные характеристики нелинейных
резистивных элементов
Лампа накаливания
Полупроводниковый диод

Резистивный элемент
Если ВАХ – прямая, проходящая
через
начало
координат,
то
резистор называют линейным.
Закон Ома:
u R Ri R
i R Gu R
R – сопротивление
Георг Симон Ом
1789 – 1854
u Ri
Единица измерения сопротивления – Ом.

Резистивный элемент
Закон Ома:
i Gu
Проводимость:
G 1
Вернер фон Сименс
1816-1892
R
Единица измерения проводимости – Сименс
(См).
Электротехника и электроника
Слайд 14
Довгун В.П.

Электрическое сопротивление. Единицы
сопротивления. Закон Ома для участка цепи.
Омметр - электрический прибор для измерения сопротивления проводника.
Определение: сопротивление- мера противодействия проводника
установлению в нем электрического тока.
Обозначение: R.
Единица измерения: 1 Ом.
Определяющая формула:
U
R
I
Ом Георг Симон
(1787-1854 гг.)
немецкий физик
-удельное сопротивление вещества,
l - длина проводника, S - площадь поперечного
сечения проводника.
Схема включения:
омметр включается
аналогично амперметру
вместе с источником тока
и переменным резистором,
необходимым для
установки нуля шкалы.
Условное
обозначение на
схемах
Омметр лабораторный

Нагревание проводников электрическим
током. Закон Джоуля-Ленца.
U I R
A IUt I IRt I Rt
2
PR u R iR Ri R2 GuR2
t
t
t
WR (t) PR dt R i dt G u R2 dt 0
2
R
ДЖОУЛЬ ДЖЕЙМС
ПРЕСКОТТ
(1818–1889), английский
физик
Ленц Эмилий
Христианович
(1804-1865 гг.),
российский
физик
U
I
R
U
U 2t
A
Ut
R
R

Работа электрического тока
!
A Pt
1 Дж 1Вт с
1Вт ч 3600 Дж
1кВт ч 1000 Вт ч 3600000 Дж

Индуктивный элемент

Li
Вебер-амперная
характеристика
N
Ф
k 1
к

d
e
dt
Майкл Фарадей (1791-1867)

Закон электромагнитной индукции
Майкла Фарадея (открыт в 1831 г.)
d
e
dt
diL
u L e L
dt
1
iL
L
t
u
L
dt
diL
PL u L iL LiL
dt
Это закон устанавливает взаимосвязь между магнитными и
электрическими явлениями.
Формулировка: ЭДС электромагнитной индукции, в
контуре численно равна и противоположна по
знаку скорости изменения магнитного потока
сквозь поверхность, ограниченную этим контуром.

Ёмкостной элемент

q=CUс
duC
iC C
dt
iC
dq
dq duC
dt
duC
dt
uC
1
C
t
i
C
dt
duC
PC uC iC cuC
dt

Схемы замещения реальных элементов электрической цепи

ВЫВОДЫ: 1.Чем выше требуемая точность, тем большее число
факторов принимается во внимание, и тем сложнее будет схема
замещения каждого элемента.
2. С целью снижения трудоемкости расчетов стремятся использовать
упрощенные схемы замещения, содержащие минимально
допустимое число элементов.
3. Схемы замещения одного и того же элемента могут иметь различный
вид в зависимости от рассматриваемого диапазона частот.

Идеальный источник напряжения (источник
напряжения, источник ЭДС) представляет собой
идеализированный активный элемент, напряжение
на зажимах которого не зависит от тока через эти
зажимы.
u=e(t)
2
2
p
1
R
u
1
R
e
(t)
i u / Rн (1 / Rн)e(t)
н
н
Идеальный источник напряжения можно
рассматривать как источник энергии, внутреннее
сопротивление которого равно нулю.

Идеальный источник тока (источник тока) -
это идеализированный активный элемент,
ток которого не зависит от напряжения на
его зажимах.
i=j(t)
u Rнi Rн j (t) p Rнi 2 Rн j 2 (t)
Идеальный источник тока можно рассматривать как источник
энергии с бесконечно малой внутренней проводимостью
(бесконечно большим внутренним сопротивлением).

Схемы замещения реальных источников

Внешние характеристики реальных источников

U E RвнI
E
J
Rв н
I J Gв нU
Gв н
1
Rв н
J
E
Gв н
Rв н
1
Gв н

Спасибо за внимание!!!

Основные понятия топологии цепей

Узел цепи является
независимым, если к
нему присоединена хотя
бы одна новая ветвь, не
подходящая к ранее
рассматриваемым
узлам.
Контур цепи является
независимым, если он
содержит хотя бы одну
новую ветвь, не
входящую в ранее
рассматриваемые
контуры.

Компонентные уравнения идеализированных элементов

uL L
diL
dt
uR = RiR
iR = GuR
iR
t
iL
1
u L dt
L
uR
R
uR
i
G
u = e(t)
i = j(t)
duC
iC C
dt
uC
1
C
t
i
C
dt
u = E – Ri i
i=J–Giu

Математическое моделирование ветвей электрической цепи на базе компонентных уравнений

u1 R1i1 L1
u 2 R2i2 ;
di3
u3 L3
;
dt
1
u 4 R3i4
C
di1
e;
dt
t
i
4
dt.

Первый закон Кирхгофа

Первый закон Кирхгофа – это закон
баланса токов в разветвленной цепи,
формулируется для узлов электрической цепи.
Он гласит: алгебраическая сумма токов в
любом узле электрической цепи в любой
момент времени равна нулю, т.е.
m
i
k 1
k
(t) 0
I1 – I2 – I3 +J = 0.

Второй закон Кирхгофа

Второй закон Кирхгофа – это закон
баланса напряжений на замкнутых участках
цепи, формулируется для контуров
электрической цепи.
Он гласит: алгебраическая
сумма
напряжений в любом замкнутом
контуре в любой момент времени
равна нулю:
n
u
k 1
k
(t) 0

Второй закон Кирхгофа

Вторая формулировка второго
закона Кирхгофа: алгебраическая
сумма ЭДС в любом замкнутом
контуре цепи в любой момент
времени равна алгебраической
сумме падений напряжений на
элементах этого контура:
m
e
k 1
k
n
(t) u k (t)
k 1

Пример 1.

uR1 uba uJ uR 2 u12 uR3 ucd uR 4 0
e1 e4 R1i1 u J u12 R2i2 R3i3 R4i4

Пример 2.

1
di
Ri idt L
e(t)
C
dt

Основные задачи теории цепей

x(t) x1 (t), x2 (t),..., xn (t)
S (t) s1 (t), s2 (t),..., sm (t)
Задачи анализа цепи – это задачи, в которых по
известным внешнему воздействию x(t),
конфигурации и параметрам цепи определяют
реакцию цепи S(t).
Задачи синтеза – это задачи, в которых требуется
определить структуру и параметры цепи по
заданной реакции цепи S(t) на некоторое
внешнее воздействие x(t).

Теория электрических цепей

Предметом теории электрических цепей является изучение наиболее общих закономерностей, описывающих процессы, протекающие во всех электротехнических устройствах. Теория электрических цепей основана на двух постулатах:

  1. Исходное предположение теории электрических цепей. Все процессы в любых электротехнических устройствах можно описать с помощью двух понятий: тока и напряжения .
  2. Исходное допущение теории электрических цепей. Ток в любой точке сечения любого проводника один и тот же, а напряжение между любыми двумя точками пространства изменяется по линейному закону.

Ток - предел отношения количества электричества, переносимого заряженными частицами через некоторую поверхность за некоторый промежуток времени, к этому промежутку времени, когда он стремится к нулю.

Считая, что заряд и время непрерывны, можно перейти от предела к производной. Размерность тока:

= Кл −1 =

Напряжение - предел отношения количества энергии, необходимой для переноса некоторого количества электричества из одной точки пространства в другую, к этому количеству электричества, когда оно стремится к нулю. Последнее равенство написано в предположении, что энергия и заряд - величины непрерывные. Размерность напряжения:

= Дж Кл −1 =

Из основных понятий как следствие вытекают определения:

Энергия - мера способности объекта совершать работу. Её размерность:

1 = Дж =

Мощность - скорость изменения энергии во времени. Размерность мощности:

= Дж −1 = = Вт

Теперь введем понятие элементов электрической цепи . Элементы - идеализированные устройства с двумя или более зажимами, все электромагнитные процессы в которых с достаточной для практики точностью могут быть описаны только в основных понятиях (тока и напряжения). Элементы бывают: линейные и нелинейные, пассивные и активные, стационарные и нестационарные, непрерывные и дискретные, с сосредоточенными и распределенными параметрами. Из дальнейшего рассмотрения исключим нестационарные элементы и элементы с распределенными параметрами. Источники электромагнитной энергии - идеализированные устройства, имеющие два или более зажимов и предназначенные для генерации или преобразования электромагнитной энергии. Источники бывают: независимые, зависимые и управляемые.

Электрическая цепь - совокупность элементов и источников, предназначенных для генерации, приема и преобразования токов и напряжений (электрических сигналов). Те участки цепи, куда поступают или для которых генерируются сигналы, называют входами; те участки, на которых регистрируют токи или напряжения в результате их генерации или преобразования, - выходами.

Литература

  • Добротворский И. Н. Теория электрических цепей. Учебник. - М .: Радио и связь, 1989.

Wikimedia Foundation . 2010 .

  • Кронштадт (значения)
  • Соглашение вызова

Смотреть что такое "Теория электрических цепей" в других словарях:

    теория (электрических) цепей - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN circuit philosophy …

    теория электрических цепей - elektrinių grandinių teorija statusas T sritis fizika atitikmenys: angl. theory of electric circuit vok. Schaltkreistheorie, f; Stromkreistheorie, f rus. теория электрических цепей, f pranc. théorie de circuits électriques, f … Fizikos terminų žodynas

    теория цепей - теория электрических цепей — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы теория электрических цепей EN… … Справочник технического переводчика

    ВЕРОЯТНОСТЕЙ ТЕОРИЯ - занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о разумности ожидания наступления одних событий по сравнению с другими, хотя приписывание численных значений вероятностям событий часто бывает излишним… … Энциклопедия Кольера

    Графов теория - раздел конечной математики (См. Конечная математика), особенностью которого является геометрический подход к изучению объектов. Основное понятие теории граф. Граф задаётся множеством вершин (точек) и множеством рёбер (связей), соединяющих …

    Электротехника Большая советская энциклопедия

    Электротехника - I Электротехника (от Электро... и Техника отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, получения и изменения химического состава веществ, производства и обработки… … Большая советская энциклопедия

    Предмет и аксиоматика ТЭЦ - Предметом теории электрических цепей является изучение наиболее общих закономерностей, описывающих процессы, протекающие во всех электротехнических устройствах. Теория электрических цепей основана на двух постулатах: 1.Исходное предположение… … Википедия

    гипотетико-дедуктивная модель теории - ГИПОТЕТИКО ДЕДУКТИВНАЯ МОДЕЛЬ ТЕОРИИ модель научной теории, репрезентирующая ее концептуальную структуру в виде системы взаимосвязанных гипотез и выводимых из них дедуктивных следствий. Формирование теорий как сложноорганизованных … Энциклопедия эпистемологии и философии науки

    Батура, Михаил Павлович - Михаил Павлович Батура белор. Міхаіл Паўлавіч Батура Дата рождения: 16 мая 1950(1950 05 16) (62 года) Место рождения: д. Клюковичи … Википедия

Книги

  • Теория электрических цепей , И.Н. Добротворский. Рассматриваются физические процессы и методы расчетов пассивных и активных электрических цепей. Воспроизведено в оригинальной авторской орфографии издания 1989 года (издательство`Радио и…

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Красноярский государственный технический университет

В.И.Вепринцев

ОСНОВЫ ТЕОРИИ ЦЕПЕЙ

Конспект лекций для студентов радиотехнических специальностей дистанционной формы обучения

Красноярск 2003

В.И.Вепринцев. Основы теории цепей.

Конспект лекций для студентов радиотехнических специальностей.Ч. 1. КГТУ,- Красноярск. 2003

Введение

Среди дисциплин, составляющих основу базовой подготовки специалистов, связанных с разработкой и эксплуатацией современной радиоэлектронной аппаратуры, важное место отводится курсу «Основы теории цепей» (ОТЦ). Содержание этой дисциплины составляют задачи анализа и синтеза электрических цепей, изучение, как с качественной, так и с количественной стороны установившихся и переходных процессов в различных радиоэлектронных устройствах. Курс ОТЦ базируется на курсах физики и высшей математики и содержит инженерные методы расчета и анализа, применимые к широкому классу современных электротехнических и радиоэлектронных цепей.

Электрическая цепь

Электрической цепью называется совокупность устройств, предназначенных для прохождения электрического тока и описываемых с помощью понятий напряжения и тока. Электрическая цепь состоит изисточников (генераторов) и потребителей электромагнитной энергии -приемников илинагруз-

ки.

Источником называют устройство, создающее (генерирующее) токи и напряжения. В качестве источников могут выступать устройства (аккумуляторы, гальванические элементы, термоэлементы, пьезодатчики, различные генераторы и т. д.), преобразующие различные виды энергии (химической, тепловой, механической, световой, молекулярно-кинетической и др.) в электрическую. К источникам относятся и приемные антенны, в которых не происходит изменение вида энергии.

Приемником называют устройство, потребляющее (запасающее) или преобразующее электрическую энергию в другие виды энергии (тепловую, механическую, световую и т. д.). К нагрузкам относятся и передающие антенны, излучающие электромагнитную энергию в пространство.

В основе теории электрических цепей лежит принцип моделирования . При этом, реальные электрических цепи заменяются некоторой идеализированной моделью, состоящей из взаимосвязанныхидеализированных элементов. Подэлементами подразумеваются идеализированные модели различных устройств, которым приписываются определенные электрические и магнитные свойства так, что они с заданной точностью отображают явления, происходящие в реальных устройствах. Таким образом, каждому элементу цепи соответствуют определенные соотношения между множеством токов и напряжений.

В теории цепей различают активные ипассивные элементы.Активными элементами считаются источники электрической энергии: источники напряжения и источники тока. Кпассивным элементам относятся сопротивления, индуктивности и ёмкости. Цепи, содержащие активные элементы, называются активными, состоящие только из пассивных элементов− пассивными.

Электрическому току приписывается направление, совпадающее с направлением перемещения положительных зарядов. Количественная характеристика − мгновенное значение тока (значение его в данный момент времени)

i = lim

∆q

∆t

∆t →0

где dq − заряд, прошедший за времяdt через поперечное сечение проводника. В системе СИ ток измеряется в амперах (А).

Для переноса элементарного заряда dq через какой-либо пассивный участок цепи, необходимо затратить энергию

dw = u dq.

Здесь u − мгновенное значение напряжения (разности потенциалов) на зажимах пассивного участка цепи. Разность потенциалов− скалярная величина, которая определяется работой сил электрического поля при переносе единичного положительного заряда через заданный пассивный участок. В системе СИ напряжение измеряется в вольтах (В).

В общем случае ток и напряжение являются функциями времени и могут иметь разные величины и знак в различные моменты времени.

В теории цепей направление тока характеризуется знаком. Положительный или отрицательный ток имеют смысл только при сравнении направления то-

ка по отношению к произвольно выбранному положительному направлению,

которое обычно указывается стрелкой (рис.1).

Положительное направление напряжения не связано с положительным направлением тока. Но, выбрав положительное направление напряжения от точки а к точкеб , условно считаем, что потенциал точкиа выше потенциала точкиб. Обычно в задачах по расчету электрических цепей считают положительное направление тока в ветви совпадающим с положительным направлением напряжения между узлами этой ветви.

Если под воздействием приложенного напряжения U через участок цепи проходит электрический зарядq , то совершаемая при этом элементарная работа или поступающая в приемник энергия равна:

dw = u dq= ui dt.

Энергия, определяемая данной формулой, доставляется источником и расходуется в приемнике, т. е. превращается в другой вид энергии, например в тепло некоторая часть её запасается в электрическом и магнитном полях элементов цепи.

Мгновенное значение скорости изменения энергии, поступающей в цепь,

p = dw dt = udq dt = ui,

называется мгновенной мощностью.

Энергия, поступившая в приемник за промежуток времени от t 1 доt 2 , вы-

ражается интегралом

W = ∫ p dt.

В системе СИ работа и энергия измеряются в джоулях (дж ), мощность в ваттах (вт).

Элементы электрической цепи

1. Пассивные элементы.

а . Сопротивление

Сопротивлением называется идеализированный элемент цепи, характеризующий преобразование электромагнитной энергии в любой другой вид энергии (тепловую− нагрев, механическую, излучение электромагнитной энергии и др.), т. е. обладающий только свойством необратимого рассеяния энергии. Условное обозначение сопротивления показано на рис.2.

Математическая модель, описывающая свойства сопротивления, определя-

ется законом Ома:

u = Riили i= Gu.

Здесь R иG − параметры участка цепи называются соответственносо-

противлением ипроводимостью, G =1/R . Сопротивление измеряется в омах (Ом), а проводимость− в сименсах (Сим).

Мгновенная мощность, поступающая в сопротивление

PR = ui= Ri2 = Gu2 .

Электрическая энергия, поступившая в сопротивление и превращенная в тепло за промежуток времени от t 1 доt 2 , равна:

WR = ∫ p dt= ∫ Ri2 dt

= ∫ Gu2 dt.

Уравнение, выражающее закон Ома, определяет зависимость напряжения от тока и называется вольт − амперной характеристикой (ВАХ) сопротивления. ЕслиR постоянно, то ВАХ линейна (рис.3,а ). Если жеR зависит от протекающего через него тока или приложенного к нему напряжения, то ВАХ становится нелинейной (рис.3,б ) и соответствует нелинейному сопротивлению.

Реальный элемент, приближающийся по своим свойствам к сопротивлению, называется резистором.

б . Индуктивность

Индуктивностью называется идеализированный элемент электрической цепи, характеризующий запасаемую в цепи энергию магнитного поля. Условное обозначение индуктивности показано на рис.4.

Если рассмотреть участок цепи (рис.5, а ), представляющий собой виток, охватывающий площадьS, через который проходит токi , то виток пронизывает магнитный поток

Ф ′ = ∫ B ds.

Ф ′ − поток вектора магнитной индукцииB через площадьS . Магнитный поток измеряется в веберах (Вб), а магнитная индукция− в тесла.

Индуктивностью витка называется отношение магнитного потока к току:

∫ B ds

т. е. индуктивность представляет собой магнитный поток, отнесенный к единице связанного с ним тока. В системе СИ индуктивность измеряется в генри

Если катушка содержит n одинаковых витков (рис.5,б ), то полный магнитный поток (потокосцепление)

Ф = n Ф′ ,

где Ф ′ − поток, пронизывающий каждый из витков. Индуктивность катушки в этом случае

L = n Ф i ′ .

В общем случае зависимость потокосцепления от тока нелинейная (рис.6, а), следовательно, индуктивность также является нелинейной.

Связь между током и напряжением на индуктивности определяется на основании закона электромагнитной индукции, согласно которому изменение потокосцепления вызывает э.д.с. самоиндукции

е L = −d dt Ф

численно равную и противоположную по знаку скорости изменения полного магнитного потока.

Если индуктивность не зависит от тока, то величина

u L = −е L =L dt di

называется напряжением (или падением напряжения) на индуктивности. Из последнего выражения следует, что ток в индуктивности

iL (t) = L − ∫ ∞ uL dt,

т.е. определяется площадью, ограниченной кривой напряжения u L (рис.7).

Мгновенная мощность имеет смысл скорости изменения запасенной в магнитном поле энергии:

pL = uL i= Lidt di .

Энергия, запасенная в магнитном поле индуктивности в произвольный момент времени t определяется по формуле

W L= ∫ t

pL dt= ∫ t

Lidi =

Здесь учтено, что при − ∞ ≤ t ≤ 0 ток в индуктивности был равен нулю. Если часть магнитного потока, связанного с катушкойL 1 , связана одно-

временно и с катушкой L 2 , то эти катушки обладают параметромМ , назы-

ваемым взаимной индуктивностью . Взаимная индуктивность определяется как отношение потокосцепления взаимной индукции одной катушки к току в другой

M = Ф 12= Ф 21.

i 2i 1

В первой и второй катушках наводятся э. д. с. взаимной индукции равные

e 1 M = −dФ dt 12 = −M di dt 2 ; e 2 M = −dФ dt 21 = −M di dt 1 .

Последние выражения справедливы при условии, что М не зависит от токов, протекающих в обеих катушках.

Взаимная индуктивность измеряется также в генри (Гн).

в. Емкость

Емкостью называется идеализированный элемент электрической цепи, характеризующий запасаемую в цепи энергию электрического поля. Условное обозначение индуктивности показано на рис.8.

При подведении к двум электродам (рис.9, а ) напряжения, на них накапливаются равные по величине и разные по знаку заряды+ q и в окружающем пространстве создается электрическое поле.

Согласно теореме Гаусса− Остроградского потокФ Е вектора электрического смещенияD

ФЕ = ∫ Dds= q.

Похожие статьи