Классификация электрических подстанций и распределительных устройств. Основные определения

03.07.2020

Одним из основных средств регулирования напряжения в электриче­ских сетях является изменение коэффициентов трансформации трансформа­торов (автотрансформаторов) на понижающих подстанциях электрических сетей.

Трансформаторы (автотрансформаторы) имеют специальные ответвле­ния от обмоток, позволяющие изменять коэффи­циент трансформации и, следовательно, регули­ровать напряжение. Переключение ответвлений может осуществляться устройством переключе­ния без возбуждения (ПБВ) при отключении трансформатора от сети или устройством регули­рования под нагрузкой (РПН) без отключения трансформатора от сети.

Также, для регулирования напряжения используются специальные ли­нейные регулировочные трансформаторы, устанавливаемые или на подстан­циях, или непосредственно в уходящие от подстанции распределительные линии электропередачи.

Регулировочные ответвления двух и трехобмоточных трансформаторов выполняются в обмотке высшего напряжения. Ток в обмотке высшего на­пряжения меньше, чем в других обмотках, при этом облегчается работа уст­ройства РПН и уменьшаются его массогабаритные показатели.

С целью, упрощения рассмотрения основных принципов регулирования коэффициентов трансформации, будем в дальнейшем рассматривать схемы трансформаторов и устройств регулирования, в однолинейном исполнении, т.е. для одной фазы симметричных трехфазных устройств.

На рис. 8.1 приведена принципиальная схема трансформатора с уст­ройством ПБВ. Первичная обмотка, (обмотка высшего напряжения), имеет нулевое ответвление и четыре регулировочных: 2,5% и 5%. Вторичная обмотка, (обмотка низшего напряжения), имеет неизменное количество витков. Нулевое ответвление ПБВ соответствует но­минальному коэффициенту трансформа­ции . Другие ответвления соответст­вуют изменению коэффициента трансфор­мации в диапазоне 5%, (от 0,95 до 1,05 ). Для переключения регулировочных ответвлений необходимо отключать трансформатор от сети. Эти переключения производятся редко, например при сезон­ном изменении нагрузки. Такие трансфор­маторы не могут использоваться для регу­лирования напряжения при нагрузки в те­чении суток.

Принципиальная схема трансформатора с РПН приведена на рис. 8.2. Первичная обмотка имеет нерегулируемую (а) и регулируемую (b) части.

Количество ответвлений на регулируемой части первичной обмотки таких трансформаторов больше, чем у трансформаторов с ПБВ. Например, для трансформатора с номинальным высшим напряжением 115кВ диапазон регу­лирования напряжения составляет 9 1,78% . Эти трансформаторы имеют, кроме нулевого, еще 18 ответвлений. Из рис. 8.2 видно, что для от­ветвлений +1,+2,…. витки регулируемой обмотки включены согласно с не­регулируемой обмоткой. При работе на этих ответвлениях коэффициент транс­формации увеличивается. Для ответвлений -1, -2,… витки регулируемой об­мотки включены встречно с нерегулируемой обмоткой. При работе на этих ответвлениях коэффициент трансформации уменьшается.

На регулируемой части обмотки имеется переключающее устройство, состоящее из подвижных контактов К3 и К4, контакторов К1 и К2 и токоо­граничивающего реактора LR, в среднюю точку которого включен вывод не­регулируемой обмотки. При работе трансформатора на любом ответвлении ток нагрузки первичной обмотки распределяется поровну между двумя час­тями реактора. Токи в разных частях реактора направлены встречно, по­этому результирующий магнитный поток реактора и его индуктивное сопро­тивление практически равны нулю.

Пусть по условиям регулирования напряжения требуется переклю­читься с ответвления +2 на ответвление +1. Для этого отключается контактор К1, а подвижный контакт К3 переключается на ответвление +1. Контактор К1 включается. Секция обмотки между ответвлениями +1 и +2 оказывается замкнутой на реактор LR. Значительная индуктивность реактора ограничи­вает уравнительный ток, который возникает вследствие наличия напряжении на замкнутой секции. После этого отключают контактор К2, переводят под­вижный контакт К4 на положение +1 и включают контактор К2.

Трансформаторы с устройствами РПН позволяют регулировать напряже­ние при изменении нагрузки в течение суток. Такие трансформаторы снабжаются автоматическими регуляторами напряжения (АРН), которые реа­гируют на изменение напряжения на вторичной обмотки трансформатора, выдавая команду на переключение ответвлений устройства РПН.

Для повышения надежности работы устройства РПН следует исклю­чить его срабатывание при незначительных отклонениях напряжения, а также при значительных, но кратковременных отклонениях напряжения. Для этого АРН имеет зону нечувствительности, несколько большую половины одной ступени регулирования. В этом случае АРН выдает сигнал на пере­ключение ответвлений, если напряжение ближе к следующей ступени регу­лирования, чем к той, на которой в данный момент работает трансформатор.

Для отстройки устройства РПН от срабатывания при кратковременных значительных отклонениях напряжения в АРН предусматривается выдержка по времени от 1 до 3 минут.

Устройства РПН автотрансформаторов работают аналогично.

Линейные регулировочные трансформаторы TLприменяются для регу­лирования напряжения в отдельных линиях или группе линий и применяются в следующих случаях:

При реконструкции уже существующих сетей, в которых использу­ются трансформаторы без регулирования под нагрузкой. В этом случае для регулирования напряжения на шинах подстанции TLвключается последова­тельно с нерегулируемым трансформатором, рис. 8.3а;

Для регулирования напряжения на отходящих линиях. В этом случае TL включаются непосредственно в линии, рис. 8.3б.;

Для регулирования напряжения на подстанциях с трансформаторами с устройствами РПН, от которых питаются потребители с разным характером нагрузки, рис. 8.3в. Характер нагрузки потребителя 3 значительно отличается от характера нагрузки остальных потребителей;

Для регулирования низшего напряжения на подстанции с автотранс­форматорами, снабженными устройствами РПН в обмотке среднего напря­жения, рис. 8.3г.


Линейный регулировочный трансформатор - статиче­ский электриче­ский аппарат, который состоит из последо­вательного 2 и питающего1 транс­форматоров (рис.8.4). Первичная обмотка питающего трансформатора 3 мо­жет получать питание от фазы или от фаз . Вторичная обмотка 4 питаю­щего трансформатора содержит такое же устройство переключения

контактов под нагрузкой 5, как и в устройстве РПН силового трансформа­тора. Один конец первичной обмотки 6 последователь­ного трансформатора 2 подключен к средней точке вторич­ной обмотки 4 питающего трансформа­тора, другой - к пе­реключающему устройству 5. Вторичная обмотка 7 по­следовательного трансформатора соединена последовательно с обмоткой высшего напряжения (ВН) силового трансформатора, и добавочная ЭДС обмотки 7 складывается с ЭДС обмотки ВН.

Если на первичную обмотку3 питающего трансформатора подается на­пряжение фазы , то ЭДС обмотки ВН силового трансформатора с помощью устройства РПН, описанного выше, регулиру­ется по модулю (рис.8.5а).

При этом - модуль ре­зультирующей ЭДС обмотки ВН силового трансформатора и обмотки 7 линейного регулировочного трансформатора (ЛР) равен: ,

где модуль ЭДС в фазе обмотки ВН силового трансформатора.

Если обмотка 3 подключается к двум фазам и , то результирующая ЭДС обмоток ВН и 7 изменяется по фазе (рис. 8.5б): .

Регулирование напряжения по модулю, когда и совпадают по фазе (рис. 8.5а), называется продольным. При таком регулировании коэффи­циент трансформации - действительная величина. Регулирование напряже­ния по фазе, когда и сдвинуты на 90° (рис. 8.5б), называется попереч­ным. Регулирование напряжения по модулю и фазе называется про­дольно-поперечным (рис. 8.5в). В этом случае обмотка 3 подключена к фазам и . При продольно-поперечном регулировании коэффициент трансформа­ции - комплексная величина.

Аналогичны схемы включения и принцип работы линейного регуля­тора включенного в низшую обмотку автотрансформатора или в отходящие из ЦП линии электропередачи.

§6 Регулирование напряжения изменением сопротивления сети. (14В)

Напряжение у потребителя зависит от величины потерь напряжения в сети, которые в свою очередь зависят от сопротивления сетей. Например,

продольная составляющая падения напряжения в линии равна:

где - потоки мощности и напряжение в конце линии; , - ее активное и реактивное сопротивления, рис.8.6.


В распределительных сетях активное сопротивление больше реактив­ного, т. е. . При изменении сечения линии в распределительных сетях существенно меняются , и изменяются и напряжение потреби­теля.

Поэтому в этих сетях сечение часто выбирается по допустимой потере напряжения.

В питающих сетях, наоборот, , поэтому в значительной сте­пени определяется реактивным сопротивлением линий, которое мало за­висит от сечения. Изменение реактивного сопротивления применяют для ре­гулирования напряжения. Чтобы изменить реактивное сопротивление, необ­ходимо включить в линию конденсатор.

Предположим, что напряжение в конце линии до установки конденса­тора ниже допустимого:

Включим последовательно в линию конденсаторы так, чтобы повысить напряжение до допустимого :

Наверняка каждый из нас замечал во дворе жилых домов будки, от которых отходит множество электрических проводов. Называется такое небольшое здание сложным на первый взгляд словом - электрическая трансформаторная подстанция.

Многие до сих пор не знают, что это за сооружение и для чего оно используется. Об этом мы и расскажем в этой статье.

Как известно, основным преимуществом электричества перед другими видами энергии является возможность его передачи на огромные расстояние с малыми потерями. Однако, небольшие потери всё равно неизбежны, так как провода обладают собственным сопротивлением и нагреваются в результате передачи по ним электрического тока.

Для того, что бы снизить потери при передаче до минимума необходимо передавать ток высоким напряжением, т.к. силу тока при этом можно снизить, в результате чего нагревание проводов значительно уменьшится, уменьшив в результате и потери тока. Принцип довольно простой - чем длиннее линия электропередачи (ЛЭП), тем большее напряжение на ней используется.

Генераторы электрического тока на электростанциях вырабатывают ток низкого для эффективной передачи на большие расстояния напряжения, поэтому на них используются трансформаторы повышающего типа.

После доставки тока до потребителя по линии электропередачи, для его использования в бытовых целях напряжение снова должно быть понижено до 500, 380 или 220 вольт, которые мы имеем в дома в розетке. Для этого используются трансформаторные подстанции понижающего типа.

Именно понижающими подстанциями и являются те сооружения, которые стоят в большинстве дворов жилых домов. Получая ток высокого напряжения они преобразуют его в 220-вольтный, который и используется для питания большинства бытовых электрических приборов.

Говоря простым языком, трансформаторная подстанция понижающего типа состоит из следующих основных частей.

  • Вводная часть - прием тока высокого напряжения.
  • Трансформатор - преобразование тока.
  • Выводная часть - выход тока низкого напряжения.

Помимо разделения на повышающие и понижающие, трансформаторные подстанции принято разделять и на блочные комплектные и контейнерные комплектные. Первые отличаются от вторых лишь своим корпусом - блочная электроподстанция устанавливается в бетонном помещении и собирается на месте - то есть является стационарной. В подстанциях контейнерного типа в качестве корпуса используется металлическое сооружение, а собираются и укомплектовываются они на заводе-изготовителе. Такие подстанции являются транспортабельными и могут быть без проблем перемещены с одного места в другое.

Если вам интересны цены на эти агрегаты, вы можете ознакомиться с ними, например, в каталоге компаний http://www.ru.all.biz/ . Там представлены различные компании, занимающиеся производством и продажей трансформаторных подстанций.

Классификация электрических ПС и РУ основана на терминах и определениях, установленных соответствующими ГОСТ и нормативно-технической документацией. К основным, наиболее часто применяемым терминам и определениям относятся следующие: подстанция электрическая - электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств по ГОСТ 19431-84 (ГОСТ 24291-90). Подстанции с трансформаторами, преобразующие электрическую энергию только по напряжению, называются трансформаторными; а преобразующие электроэнергию по напряжению и другим параметрам (изменение частоты, выпрямление тока), - преобразовательными. На ПС могут устанавливаться два и более, как правило, трехфазных трансформатора. Установка более двух трансформаторов принимается на основе технико-экономических расчетов, а также в случаях, когда на ПС применяется два средних напряжения. При отсутствии трехфазного трансформатора необходимой мощности, а также при транспортных ограничениях возможно применение группы однофазных трансформаторов. Подстанция, как правило, состоит из нескольких РУ разных ступеней напряжения, соединенных между собой трансформаторной (автотрансформаторной) связью; пристроенная ПС (РУ) - подстанция (распределительное устройство), непосредственно примыкающая к основному зданию электростанции или промышленного предприятия (ПУЭ, п. 4.2.7); встроенная ПС (РУ) - подстанция (распределительное устройство), занимающая часть здания (ПУЭ, п. 4.2.8); внутрицеховая ПС (РУ) - подстанция (распределительное устройство), расположенная внутри цеха открыто (без ограждения), за сетчатым ограждением, в отдельном помещении (ПУЭ, п. 4.2.9); здание вспомогательного назначения (ЗВН) - здание, состоящее из помещений, необходимых для организации и проведения работ по техническому обслуживанию и ремонту оборудования ПС (ПУЭ, п. 4.2.16); трансформаторная подстанция (ТП) - электрическая подстанция, предназначенная для преобразования электрической энергии одного напряжения в энергию другого напряжения с помощью трансформаторов (ГОСТ 24291-90). Потребительские ТП разделяются на комплектные, закрытые, мачтовые и столбовые; комплектная трансформаторная ПС (КТП) - ПС, состоящая из трансформаторов, блоков (КРУ и КРУН) и других элементов, поставляемых в собранном или полностью подготовленном на заводе-изготовителе к сборке виде (ПУЭ, п. 4.2.10). В КТП вся высоковольтная и низковольтная аппаратура монтируется на заводе, и подстанция на объект поступает в готовом виде, то есть в комплекте. Комплектные трансформаторные подстанции внутренней (КТП) и наружной (КТПН) установок выпускают с одним или двумя трансформаторами мощностью от 250 до 2 500 кВА (в КТП) и до 1000 кВА (в КТПН) при напряжении 6-10 кВ; от 630 до 16 000 кВА (в КТПН) при напряжении 35 кВ. Эти ПС комплектуются защитной коммутационной аппаратурой, приборами измерений, сигнализации и учета электроэнергии и состоят из блока ввода высокого напряжения, силового трансформатора и РУ 0,4 кВ. КТП бывают тупикового и проходного типов, а также различных модификаций, в том числе: киоскового, шкафного и других типов. КТП тупикового типа используются для электроснабжения населенных пунктов и сельскохозяйственных потребителей. КТП киоскового типа (блочные) применяются в качестве тупиковых ТП мощностью 250 кВА и выше с обслуживанием оборудования с земли. Такие ПС удобны и безопасны в обслуживании; мачтовая трансформаторная ПС (МТП) - открытая трансформаторная ПС, все оборудование которой установлено на конструкции (в том числе на двух и более стойках опоры ВЛ) с площадкой обслуживания на высоте, не требующей ограждения ПС (ПУЭ, п. 4.2.11). МТП сооружают на А-, П- или АП-образных или одностоечных конструкциях, изготавливаемых из железобетонных или деревянных стоек. На А-образной конструкции монтируется все оборудование ПС: разъединитель, предохранители, разрядники, однофазный трансформатор мощностью более 10 кВА и распределительный щит 0,23- 0,4 кВ. Подстанция не имеет площадки обслуживания и лестницы. П-образные конструкции используются для ПС с трехфазными трансформаторами мощностью до 250 кВА включительно. Трансформатор располагается на площадке на высоте от земли не менее 3,5 м. АП-образные конструкции применяются для ПС с трансформаторами мощностью до 400 кВА. На них монтируются все оборудование, в том числе и разъединитель. Для обслуживания МТП на высоте не менее 3 м должна быть устроена площадка с перилами. Для подъема на МТП рекомендуется применять лестницы с устройством, запрещающим подъем по ней при включенном коммутационном аппарате; столбовая трансформаторная ПС (СТП) - открытая трансформаторная ПС, все оборудование которой установлено на одностоечной опоре ВЛ на высоте, не требующей ограждения (ПУЭ, п. 4.2.11). Конструктивно ПС состоит из отдельных элементов, которые при сборке на месте монтируются в единый комплекс; распределительный пункт (РП) - РУ 6-500 кВ с аппаратурой для управления его работой, не входящее в состав ПС (ПУЭ, п. 4.2.12); секционирующий пункт - пункт, предназначенный для секционирования (автоматическим или ручным управлением) участка линий 6-20 кВ (ПУЭ, п. 4.2.13); камера - помещение, предназначенное для установки аппаратов, трансформаторов и шин. Закрытая камера - камера, закрытая со всех сторон и имеющая сплошные (не сетчатые) двери. Огражденная камера - камера, которая имеет проемы, защищенные полностью или частично несплошными (сетчатыми или смешанными) ограждениями (ПУЭ, п. 4.2.14). Камера сборная одностороннего обслуживания (КСО) является разновидностью КРУ, изготавливается по типовым схемам, имеет множество модификаций, устанавливается только в специальных электротехнических помещениях и обслуживается обученным персоналом; система сборных шин - устройство, представляющее собой систему проводников, состоящее из шин, установленных на опорах из изоляционного материала, проходящих в каналах, коробах или подобных оболочках (ГОСТ 22789-94); секция (системы сборных шин) - часть системы сборных шин, отделенная от другой ее части коммутационным аппаратом (ГОСТ 24291-90); токопровод - устройство, выполненное в виде шин или проводов с изоляторами и поддерживающими конструкциями, предназначенное для передачи и распределения электрической энергии в пределах электростанции, ПС или цеха (ПТЭЭП, термины); ячейка (ПС, РУ) - часть ПС (РУ), содержащая всю или часть коммутационной и (или) иной аппаратуры одного присоединения (ГОСТ 24291-90); распределительное устройство (РУ) - электроустановка для приема и распределения электрической энергии на одном напряжении, содержащая коммутационные аппараты и соединяющие их сборные шины (секции шин), устройства управления и защиты (ГОСТ 24291-90). В качестве РУ 6-10 кВ используется сборка высокого напряжения с однополюсными разъединителями и вертикальным расположением фаз одного присоединения и одна камера КСО с выключателем нагрузки и предохранителями для подключения трансформатора. Для РУ 0,4 кВ применяются сборки низкого напряжения с предохранителями и вертикальным расположением фаз одного присоединения. На ПС применяются открытые (ОРУ), закрытые (ЗРУ) или комплектные (КРУ) распределительные устройства. Открытое распределительное устройство (ОРУ) - это электрическое распределительное устройство, оборудование которого расположено на открытом воздухе (ГОСТ 24291-90). Закрытое распределительное устройство (ЗРУ) - это электрическое устройство, оборудование которого расположено в помещении (ГОСТ 24291-90). Закрытые ПС и РУ могут располагаться как в отдельно стоящих зданиях, так и быть встроенными или пристроенными. В общем случае ПС и РУ являются составной частью электроустановок, которые различаются: по назначению - генерирующие, преобразовательно-распределительные и потребительские. Генерирующие электроустановки служат для выработки электроэнергии, преобразовательно-распределительные электроустановки преобразуют электроэнергию в удобный для передачи и потребления вид, передают ее и распределяют между потребителями; по роду тока - постоянного или переменного тока; по напряжению - до 1000 В или выше 1000 В. Шкала номинальных напряжений ограничена сравнительно небольшим числом стандартных значений, благодаря чему изготавливается небольшое число типоразмеров машин и оборудования, а электросети выполняются более экономичными. В установках трехфазного тока номинальным напряжением принято считать напряжение между фазами (междуфазовое напряжение). Согласно ГОСТ 29322-92 установлена следующая шкала номинальных напряжений: для электросетей переменного тока частотой 50 Гц междуфазовое напряжение должно быть: 12, 24, 36, 42, 127, 220, 380 В; 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750 и 1150 кВ; для электросетей постоянного тока: 12, 24, 36, 48, 60, 110, 220, 440, 660, 825, 3000 В и выше. По способу присоединения к электросети ПС разделяются на тупиковые (блочные), ответвительные (блочные), проходные (транзитные) и узловые. Тупиковые ПС получают питание по одной или двум тупиковым ВЛ. Ответвительные ПС присоединяются ответвлением к одной или двум проходящим ВЛ с односторонним или двухсторонним питанием. Проходные ПС включаются в рассечку одной или двух проходящих ВЛ с односторонним или двухсторонним питанием. Узловые ПС кроме питающих имеют отходящие радиальные или транзитные ВЛ. По способу управления ПС могут быть: только с телесигнализацией; телеуправляемыми с телесигнализацией; с телесигнализацией и управлением с общеподстанционного пункта управления (ОПУ). Подстанции оперативно обслуживаются постоянным дежурным персоналом на щите управления, дежурными на дому или оперативно-выездными бригадами (ОВБ). Ремонт ПС осуществляется специализированными выездными бригадами централизованного ремонта или местным персоналом подстанции. В РУ напряжением до 1000 В провода, шины, аппараты, приборы и конструкции выбирают как по нормальным условиям работы (напряжению и току), так и по термическим и динамическим воздействиям токов коротких замыканий (КЗ) или предельно допустимой отключаемой мощности. В РУ и ПС напряжением выше 1000 В расстояния между электрооборудованием, аппаратами, токоведущими частями, изоляторами, ограждениями и конструкциями устанавливаются так, чтобы при нормальном режиме работы электроустановки возникающие физические явления (температура нагрева, электрическая дуга, выброс газов, искрение и др.) не могли привести к повреждению оборудования и КЗ. В сетях напряжением 6-10 кВ широко используются распределительные пункты (РП), представляющие собой электрическое РУ, не входящее в состав ПС (ГОСТ 242910-90), и предназначенное для распределения электрической энергии внутри распределительной сети. РП представляет собой разделенные на секции сборные шины, определенное количество ячеек (присоединений) и коридор управления. Ячейки служат для размещения в них коммутационной и защитной аппаратуры: выключателей, трансформаторов тока (ТТ) и трансформаторов напряжения (ТН), разъединителей, предохранителей, приборов защиты. Коридор управления РП представляет собой помещение, в котором установлены приводы выключателей и разъединителей; коридором обслуживания называется коридор вдоль камер или шкафов КРУ, предназначенный для обслуживания аппаратов и шин. Шинопровод - это токоведущие элементы, расположенные в металлической оболочке, служащие для соединения главных цепей составных частей КТП в соответствии с электрической схемой соединения и конструктивным исполнением КТП (ГОСТ 14695-80). РУ 6-10 кВ имеют в РП две секции, питающиеся по одиночным или сдвоенным КЛ сечением от 185 до 240 мм 2 от разных секций РУ 6-10 кВ одного (от ПС 35-110 кВ) или от разных центров питания. На секционном выключателе в РП предусматривается устройство двухстороннего автоматического включения резерва (АВР), которое выполняется на стороне 0,4 кВ на контакторах с номинальным током от 600 до 1000 А. По месту своего расположения устройства АВР могут быть местными (в пределах одной ПС, например, АВР на секционном выключателе), или вблизи нее, или сетевыми (в различных точках сети), обеспечивающими при своем срабатывании восстановление питания участков сети рядом с ПС. Распределительная трансформаторная подстанция (РТП) - это электроустановка, в которой совмещены РП и ТП. В РТП могут размещаться трансформаторы единичной мощностью до 1000 кВА включительно, РУ 6-10 кВ с определенным количеством ячеек и комплектный распределительный щит 0,4 кВ. Поэтому РТП позволяет осуществить распределение электроэнергии не только на напряжении 0,4 кВ, как обычная ТП, но и на напряжении 6-10 кВ, как в РП. Таким образом, РТП в отличие от РП служит не только для приема и распределения электроэнергии, но и для ее трансформации. Как правило, от РТП осуществляется электропитание нескольких ТП. РТП целесообразно использовать для электроснабжения городов и крупных сельскохозяйственных комплексов (животноводческие фермы, птицефабрики и т. п.). РТП выполняются, как правило, закрытого типа. Центр питания (ЦП) - это РУ генераторного напряжения электростанций или РУ вторичного напряжения понизительной ПС энергосистемы, к которым присоединены распределительные сети данного района (ГОСТ 13109-97). Это главным образом подстанции 35-220 кВ энергосистем, от которых получают питание распределительные сети 6-10 кВ. От ЦП в распределительную сеть электроэнергия передается непосредственно на шины ТП или через шины РП. Совокупность указанного выше электрооборудования вместе с сооружениями и помещениями, в которых они установлены, определяется общим термином - электроустановка. Электроустановка - это любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения (ГОСТ 30331.1-95, ГОСТ Р 50571.1-93). Электроустановки и связанные с ними конструкции должны быть стойкими в отношении воздействия окружающей среды или защищенными от этого воздействия. Открытые или наружные электроустановки - электроустановки, не защищенные зданием от атмосферных воздействий. Электроустановки, защищенные только навесами, сетчатыми ограждениями и т. п., рассматриваются как наружные (ПУЭ). Закрытые или внутренние электроустановки - электроустановки, размещенные внутри здания, защищающего их от атмосферных воздействий (ПУЭ). Электропомещения, то есть помещения или отгороженные (например, сетками) части помещения, в которых расположено электрооборудование, доступное только для квалифицированного обслуживающего персонала, по воздействию окружающей среды в соответствии с классификацией по ПУЭ разделяются на следующие виды: сухие - помещения, в которых относительная влажность воздуха не превышает 60 %; влажные - помещения, в которых относительная влажность воздуха более 60 %, но не превышает 75 %; сырые - помещения, в которых относительная влажность воздуха превышает 75 %; особо сырые - помещения, в которых относительная влажность воздуха близка к 100 % (потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой); жаркие - помещения, в которых под воздействием различных тепловых излучений температура постоянно или периодически (более 1 суток) превышает +35 °C (например, помещения с сушилками, обжигательными печами, котельные); пыльные - помещения, в которых по условиям производства выделяется технологическая пыль; она может оседать на токоведущих частях, проникать внутрь машин и аппаратов и т. п. Пыльные помещения разделяются на помещения с токопроводящей пылью и помещения с нетокопроводящей пылью; помещения с химически активной или органической средой - помещения, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающие изоляцию и токоведущие части электрооборудования. В отношении опасности поражения людей электрическим током различаются: помещения без повышенной опасности - помещения, в которых отсутствуют условия, создающие повышенную или особую опасность; помещения с повышенной опасностью - помещения, характеризующиеся наличием одного из следующих условий, создающих повышенную опасность: сырость или токопроводящая пыль; токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т. п.); высокая температура; возможность одновременного прикосновения человека к металлоконструкциям здания, имеющим соединение с землей, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям), с другой стороны; особо опасные помещения - помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность: особая сырость; химически активная или органическая среда; одновременно два или более условий повышенной опасности. Территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям.

В целях экономии металла при изготовлении ЛЭП возникает необходимость в значительном повышении передаваемого напряжения и в свою очередь уменьшения потерь на этапе активного сопротивления. Чем выше напряжение, тем больше мощность, а значит, тем больше расстояние, на которое может быть передана электроэнергия. Электрическая подстанция представляет собой установку, используемую для распределения либо преобразования энергии. Электрические подстанции - это, безусловно, один из самых важных конструктивных элементов любой системы передачи и распределения электроэнергии. Наличие в устройстве трансформаторов позволяет осуществлять понижение и повышение величины напряжения.

Устройство электрической подстанции

Любая электрическая подстанция состоит из нескольких элементов, наиболее важным из которых является трансформатор, задача которого состоит в преобразовании электроэнергии, расщеплении, повышении или понижении линии. Работая на высоких мощностях трансформатор выделяет значительное количество тепла, которое отводится и рассевается благодаря конструкции, оснащенной радиатором. Для адекватной работы всех элементов конструкции важно, чтобы и подстанций осуществлялась специалистами. Еще один важный элемент устройства электрической подстанции - вводные конструкции под кабельные линии. Их задача - организовывать прием вводного напряжения, передавая его на вход трансформатора. После преобразования энергия передается на распределительное устройство (РУ), задача которого - принять и распределить электричество.

Кроме основных компонентов оборудование подстанции включает несколько модулей, выполняющих специфическую задачу.

  • Разъединители

Осуществляют оперативное переключение в электросхеме РУ и создание видимого разрыва цепи. Разъединители нельзя разъединять под нагрузкой, так как они не имеют дугогасительных элементов. Состоят разъединители из неподвижных (закрепленных на изоляторах) и подвижных контактов.

  • Измерительные компоненты

Трансформаторы, измеряющие электрические величины и питающие устройство релейной защиты. При максимальном значении величин, напряжение и выходной ток не превышают 100 В и 5 А.

Соединяют отдельные элементы РУ. Изготавливаются из меди либо алюминия.

  • Регулирующие устройства

Реакторы, батареи, фазовращатели ограничивают значения тока.

  • Нелинейный ограничитель и разрядники

Осуществляют защиту линий от коммутационных и атмосферных перенапряжений.

  • Заземляющие устройства

Соединяют с землей части оборудования, изготовленные из металла.

  • Силовые выключатели

Коммутационные компоненты, отвечающие за включение и выключение силовой цепи в режиме токовой нагрузки, перегрузки, холостого хода, короткого замыкания.

  • Системы автоматики и защиты

Сюда входит система коммерческого и технического учета электрической энергии, система управления и так далее.

Классификация подстанций

Основные виды электрических подстанций являются распределительные и трансформаторные подстанции. Распределительная подстанция является узловой и осуществляет прием и распределение электрической энергии. Трансформаторная подстанция отвечает за уменьшение либо повышение значения напряжения благодаря наличию встроенного трансформатора.

В зависимости от способа присоединения к сети выделяют несколько видов подстанций:

  • Ответвительная

Может быть присоединена к двум или одной линии глухой отпайкой, осуществляется по схеме 2-х блоков с короткозамыкателями и отделителями. Присоединяется к линиям 35-220 кВ.

  • Проходная

Входит в рассечку двух или одной линии с одно- или двухсторонним питанием. Применяются подстанцию этого типа в простых замкнутых сетях. Для проходной подстанции может быть предусмотрена отходящая линия с разъединителем. Транзит мощности осуществляется через нормально замкнутую перемычку с выключателем.

  • Промежуточная

Подстанция, необходимая для питания потребителей. Промежуточные подстанции могут присоединяться к двум или одной проходящим ВЛ, либо присоединяться путем захода ВЛ с одно/двухсторонним питанием.

  • Транзитная

Используется для питания потребителей и передачи потоков мощности в смежные сети соседних энергосистем.

  • Преобразовательная

Подстанция, служащая для приема и передачи мощности на постоянном токе. Характеризуется большой мощностью и значительным числом выпрямительных, параллельно работающих, агрегатов.

  • Узловая

Тип подстанции, к которой может быть присоединено более 2-х линий, которые приходят от нескольких электроустановок.

  • Тупиковая

Данная разновидность подстанции получает электроэнергию от электроустановки по нескольким или одной линии. Выполняются по схеме блока: трансформатор - линия с предохранителем и разъединителем электрическим.

Конструктивно РУ электрической подстанции может быть открытого типа (когда оборудование расположено под открытым небом) и закрытого типа (как правило, в условиях города).

Исходя из назначения подстанции классифицируются на системные и потребительские. На системных подстанциях происходит связь различных энергосистем или отдельных районов энергосистемы. Распределение электрической энергии между потребителями осуществляют потребительские подстанции. Мощность и назначение отдельно взятой подстанции определяется конфигурацией и схемой сети, в рамках которой подстанция подлежит эксплуатации, а также характером нагрузок, полученных от присоединенных потребителей

Специалисты по электротехнике знают, что собой представляют электрические станции и подстанции, для чего они предназначены и как устроены. Им известно, как рассчитать их мощность и все необходимые параметры, такие как число витков, сечение провода и размеры магнитопровода. Этому учат студентов в технических вузах и техникумах. Люди с гуманитарным образованием догадываются, что сооружения, часто стоящие особняком в виде домиков без окон (их любят раскрашивать любители граффити), нужны для энергоснабжения домов и предприятий, и проникать в них не следует, об этом красноречиво говорят устрашающие эмблемы в виде черепов и молний, прикрепленные к опасным объектам. Возможно, многим и не нужно больше знать, но информация лишней не бывает.

Немного физики

Электроэнергия - это товар, за который надо платить, и очень обидно, если она расходуется напрасно. А это, как при любом производстве, неизбежно, задача состоит лишь в том, чтобы напрасные потери уменьшить. Энергия равна мощности, умноженной на время, поэтому в дальнейших рассуждениях можно оперировать этим понятием, так как время течет постоянно, и повернуть его назад, как поется в песне, невозможно. Электрическая мощность же, в грубом приближении, без учета реактивных нагрузок, равна произведению напряжения на ток. Если рассматривать ее подробнее, в формулу попадет косинус фи, определяющий соотношение потребленной энергии с полезной ее составляющей, называемой активной. Но этот важный показатель не имеет прямого отношения к вопросу о том, зачем нужна подстанция. Электрическая мощность, таким образом, зависит от двух главных участников законов Ома и Джоуля-Ленца, напряжения и тока. Малый ток и высокое напряжение могут образовывать такую же мощность, как и наоборот, большой ток и низкое напряжение. Казалось бы, какая разница? А она есть, и очень большая.

Нагревать воздух? Увольте!

Итак, если воспользоваться формулой активной мощности, то получится следующее:

  • P = U x I, где:

    U - напряжение, измеряемое в Вольтах;
    I - ток, измеряемый в Амперах;
    P - мощность, измеряемая в Ваттах или Вольт-амперах.

Но есть и еще одна формула, описывающая упоминавшийся уже закон Джоуля-Ленца, согласно которой выделяемая при прохождении тока, равна квадрату его величины, умноженной на сопротивление проводника. Нагревать окружающий линию электропередачи воздух - значит, зря расходовать энергию. А уменьшить эти потери можно теоретически двумя способами. Первый из них предполагает уменьшение сопротивления, то есть утолщение проводов. Чем больше сечение, тем меньше сопротивление, и наоборот. Но расходовать металл зря тоже не хочется, он дорогой, медь все-таки. К тому же двойной расход материала проводника приведет не только к удорожанию, но и к утяжелению, что, в свою очередь, повлечет увеличение трудоемкости монтажа высотных линий. И опоры потребуются более мощные. А потери снизятся только вдвое.

Решение

Чтобы уменьшить нагрев проводов при передаче энергии, нужно снизить величину проходящего тока. Это совершенно ясно, ведь его снижение вдвое приведет к уменьшению потерь вчетверо. А если в десять раз? Зависимость квадратичная, значит, убытки станут в сто раз меньше! Но мощность должна «качаться» та же, которая нужна совокупности потребителей, ожидающих ее на другом конце ЛЭП, идущей от электростанции иногда за сотни километров. Напрашивается вывод о том, что необходимо увеличить напряжение во столько же раз, во сколько уменьшен ток. в начале линии передачи как раз для этого и предназначена. Из нее выходят провода под очень большим напряжением, измеряемым десятками киловольт. На протяжении всего расстояния, отделяющего ТЭС, ГЭС или АЭС от того населенного пункта, куда она адресована, энергия путешествует с малым (относительно) током. Потребителю же нужно получить мощность с заданными стандартными параметрами, которые в нашей стране соответствуют 220 вольтам (или 380 V межфазным). Теперь нужна не повышающая, как на входе ЛЭП, а понижающая подстанция. поступает на распределительные устройства для того, чтобы в домах горел свет, а на заводах крутились роторы станков.

Что в будке?

Из вышесказанного ясно, что самая главная деталь в подстанции - это трансформатор, причем обычно трехфазный. Их может быть несколько. Например, можно заменить тремя однофазными. Большее количество может быть обусловлено высокой мощностью потребления. Конструкция этого устройства бывает различной, но в любом случае она имеет внушительные размеры. Чем большая мощность отводится потребителю, тем серьезнее выглядит сооружение. Устройство электрической подстанции, тем не менее, сложнее, и включает в себя не только трансформатор. Здесь же находится оборудование, предназначенное для коммутации и защиты дорогостоящего агрегата, а также чаще всего и для его охлаждения. Еще электрическая часть станций и подстанций содержит распределительные щиты, снабженные контрольно-измерительной аппаратурой.

Трансформатор

Главная задача этого сооружения - донести энергию до потребителя. Перед отправкой напряжение нужно повысить, а после ее получения понизить до стандартного уровня.

При всем том, что схема электрической подстанции включает множество элементов, главным из них является все же трансформатор. Принципиальной разницы между устройством этого изделия в обычном блоке питания бытового прибора и промышленными образцами высокой мощности нет. Трансформатор состоит из обмоток (первичной и вторичной) и магнитопровода, сделанного из ферромагнетика, то есть материала (металла), усиливающего магнитное поле. Расчет этого устройства - вполне стандартная учебная задача для студента технического вуза. Главное отличие трансформатора подстанции от его менее мощных аналогов, бросающееся в глаза, помимо размеров, состоит в наличии системы охлаждения, представляющей собой совокупность масляных трубопроводов, опоясывающих греющиеся обмотки. Проектирование электрических подстанций, однако, задача непростая, так как необходим учет многих факторов, начиная от климатических условий и заканчивая характером нагрузки.

Тяговые мощности

Не только жилые дома и предприятия потребляют электроэнергию. Здесь все ясно, нужно подать 220 Вольт переменного тока относительно нейтральной шины или 380 В между фазами с частотой 50 Герц. Но есть еще и городской электротранспорт. Трамваям и троллейбусам требуется напряжение не переменное, а постоянное. Причем разное. На контактном проводе трамвая должно быть 750 Вольт (относительно земли, то есть рельсов), а троллейбусу требуется на одном проводнике ноль и 600 Вольт постоянного тока на другом, резиновые протекторы колес являются изоляторами. Значит, нужна отдельная очень мощная подстанция. на ней преобразуется, то есть выпрямляется. Мощность ее очень большая, ток в цепи измеряется тысячами Ампер. Такое устройство называется тягловым.

Защита подстанции

И трансформатор, и мощное выпрямительное устройство (в случае с тягловыми источниками электропитания) стоит дорого. Если возникнет аварийная ситуация, а именно в цепи вторичной обмотки (а следовательно, и первичной) появится ток. Значит, сечение проводников не рассчитано. Электрическая трансформаторная подстанция начнет нагреваться за счет резистивного тепловыделения. Если не предусмотреть такой сценарий развития событий, то в результате короткого замыкания в любой из периферийных линий провод обмоток расплавится или сгорит. Чтобы этого не произошло, применяются различные методы. Это дифференциальная, газовая и максимальная токовая защиты.

Дифференциальная производит сравнение величин тока в цепи и вторичной обмотке. Газовая защита срабатывает при появлении в воздушной среде продуктов горения изоляции, масла и проч. Токовая защита отключает трансформатор при превышении током максимально установленного значения.

Трансформаторная подстанция автоматически должна отключиться также в случае удара молнии.

Виды подстанций

Они бывают разными по мощности, по назначению и устройству. Те из них, которые служат только для повышения или понижения напряжения, называются трансформаторными. Если требуется также изменение других параметров (выпрямление или частотная стабилизация), то подстанция называется преобразующей.

По своему архитектурному исполнению ПС бывают пристроенными, встроенными (примыкающими к основному объекту), внутрицеховыми (находящимися внутри производственного помещения) или представлять собой отдельно стоящее вспомогательное здание. В некоторых случаях, когда не требуется высокая мощность (при организации энергоснабжения небольших населенных пунктов), применяется мачтовая конструкция подстанций. Иногда для размещения трансформатора используются опоры ЛЭП, на которых монтируется все необходимое оборудование (предохранители, разрядники, разъединители и проч.).

Электрические сети и подстанции классифицируются по напряжению (до 1000 кВ или более, то есть высоковольтные) и мощности (например, от 150 ВА до 16 тыс. кВА).

По схематическому признаку наружного подключения подстанции бывают узловыми, тупиковыми, проходными и ответвительными.

Внутри камеры

Пространство внутри подстанции, в котором расположены трансформаторы, шины и аппаратура, обеспечивающая работу всего устройства, называется камерой. Она может быть огражденной или закрытой. Разница между способами отчуждения ее от окружающего пространства невелика. Закрытая камера представляет собой полностью изолированное помещение, а огражденная находится за несплошными (сетчатыми или решетчатыми) стенами. Изготавливаются они, как правило, промышленными предприятиями по типовым проектам. Обслуживание систем энергоснабжения производит обученный персонал, имеющий допуск и необходимую квалификацию, подтвержденную официальным документом о разрешении работать на высоковольтных линиях. Оперативное наблюдение за работой подстанции осуществляет дежурный электрик или энергетик, находящийся возле главного распределительного щита, который может располагаться удаленно от ПС.

Распределение

Есть еще одна важная функция, которую выполняет силовая подстанция. Электрическая энергия распределяется между потребителями согласно их нормам, а кроме этого, загруженность трех фаз должна быть как можно более равномерной. Для того чтобы эта задача успешно решалась, существуют распределительные устройства. РУ работают на одном напряжении и содержат аппараты, осуществляющие коммутацию и защиту линий от перенагрузки. С трансформатором РУ соединены предохранителями и прерывателями (однополюсными, по одному на каждую фазу). Распределительные устройства по месту размещения подразделяются на открытые (расположенные на открытом воздухе) и закрытые (находящиеся внутри помещения).

Безопасность

Все работы, производимые в электрической подстанции, относятся к разряду особо рискованных, поэтому требуют чрезвычайных мер по обеспечению безопасности труда. В основном ремонт и обслуживание производятся при полном или частичном обесточивании. После того как напряжение будет отключено (электрики говорят «снято»), при условии наличия всех необходимых допусков, токоведущие шины заземляются во избежание случайного включения. Для этого же предназначены и предупредительные таблички «Работают люди» и «Не включать!». Персонал, обслуживающий высоковольтные подстанции, систематически проходит обучение, а навыки и полученные знания периодически контролируются. Допуск № 4 дает право выполнять работы на электроустановках свыше 1 кВ.

Похожие статьи