Компоненты биометрических систем. Биометрические системы аутентификации, как способ реализации контроля

13.05.2019

Часто задаваемые вопросы

Для правильного и качественного анализа по хиромантии в первую очередь нужны фотографии ваших ладоней.

Вам нужно сделать 5 фотографий:

  • - правая рука (не отрезаем на фото пальцы и браслеты)
  • - левая рука
  • - ребро со стороны мизинца правой руки
  • - ребро со стороны мизинца левой руки
  • - правая ладонь - без пальцев

Для идеального фото, конечно же, нужен цифровой фотоаппарат. Чем большее разрешение будет у фотоаппарата, тем лучше. Если у Вас мощная камера на сотовом телефоне, то ставьте на макросъемку.

На фото должны быть видны мельчайшие линии на ладони, должен просматриваться папиллярный узор. Ведь только в таком случае возможно увидеть полную картину линий и знаков и, соответственно, сделать более полный анализ и дать максимально подробную информацию по Вашему фото.

Фото советую делать днем, при солнечном свете. Как вариант, около окна.

Мы должны отключить вспышку и перевести фотоаппарат в режим близкой съемки (макросъемки), который обычно выделяется значком цветка. В процессе фото Вам нужно закрепить и руку, которую Вы снимаете и сам фотоаппарат. Любые движения в процессе съемки лучше исключить.

Фото лучше делать на светлом фоне. Подоконник подойдет)))

Большой палец отводится в сторону, но без усилия, а 4 остальных пальца держим свободно, но не прижимаем друг к другу и не растопыриваем!!!

Фото делаем так, чтобы была видна вся ладонь и пальцы.

Также делаем фото и ребра ладони.

При фотографировании ребра ладоней- не напрягайте руку, она должна быть в свободном состоянии.

Это тоже хороший вариант, но скан также нужно сделать правильно.

Для начала ставим разрешение сканирования не менее 300 тчк/дюйм (лучше больше, но не переусердствуйте!!!)

Кладем руку на стекло также, как я рассказывала при фото. То есть большой палец отводим в сторону, а остальные держим свободно. Руку в стекло не вдавливать!!! На весу ее держать, конечно, не нужно, но и не придавливать, иначе изображение будет нечитаемое.

Если у Вас сильно вдавлен центр ладони или хорошо развитые бугры мешают сделать скан таким образом, чтобы были видны все линии, то я советую ФОТО!

Не сжимайте фото и присылайте реального размера!

| К списку авторов | К списку публикаций

Биометрическая технология распознавания вен ладони, или Вслед за японскими банками

За последние пять лет интерес к биометрическим технологиям значительно возрос. Сейчас для физического и логического доступа наряду с картами все чаще применяется биометрическая идентификация по отпечаткам пальцев, радужной оболочке глаза или 3D-распознаванию лица. Если еще десять лет назад использование биометрии казалось нереализуемой задачей, то сегодня подобные решения активно внедряются, заменяя пластиковые карты

Александр Дремин
Генеральный директор компании "Прософт-Биометрикс"

В 2004 г. крупнейшие банки Японии, такие как Ogaki Kyoritsu Bank, Suruga Bank, The Hiroshima Bank и The Bank of IKEDA, внедрили систему биометрической идентификации по венам ладони для подтверждения операций по банковской карте в банкоматах. Нововведение позволило значительно повысить уровень безопасности и комфорта при организации доступа к личному счету даже при отсутствии банковской карты. Повышенный интерес к технологии был обусловлен необходимостью разработки надежной системы доступа даже во время стихийных бедствии и катастроф. Так, например, во время крупного землетрясения в Японии в 2011 г. многие жители не смогли воспользоваться банкоматами для снятия наличных средств, поскольку карты и другие подтверждающие документы были безвозвратно утеряны.

В данной статье рассмотрим биометрическую технологию распознавания вен ладони, ее преимущества и недостатки.

Принцип работы метода

Метод сканирования подкожных вен ладони основан на считывании отраженного от человеческой ладони излучения в инфракрасной области спектра с длиной волны 760 нм. Поскольку восстановленный гемоглобин крови поглощает инфракрасное излучение, то от венозных сосудов ладони отражается излучение меньшей интенсивности, чем от остальной ее поверхности. Так формируется уникальный рисунок венозных сосудов, и вены становятся видимыми при сканировании в ИК-лучах.


На рис. 1 показана зависимость коэффициента поглощения гемоглобином крови от длины волны в инфракрасном спектре.

Ладонь против пальцев

По сравнению с отпечатком или рисунком вен пальцев рисунок вен ладони сложнее и имеет больше уникальных особенностей, позволяющих довольно точно строить цифровую модель и производить идентификацию по базам данных. Внутренняя сторона ладони менее восприимчива к изменению цвета кожи в отличие от тыльной стороны, поэтому именно она в основном используется для идентификации. Стоит также отметить, что данный метод абсолютно безвреден для кожи и кровеносных сосудов.

Конструктив системы идентификации

Рассмотрим конструктив системы идентификации по венам ладони на рис. 2. Сканер представляет собой устройство, в основе которого используются CMOS-матрица, оптическая линза и светофильтры. Захват изображения с CMOS-матрицы производится не менее 300 раз в секунду.


Полученная картинка поступает на персональный компьютер или микроконтроллер для последующей обработки. Как правило, в самой конструкции сканера уже имеется микроконтроллер для формирования математического шаблона и возможности шифрования данных для безопасной передачи посредством USB-интерфейса либо отправки по локальной сети.

Создание биометрического шаблона

Этап 1
Первым этапом в создании биометрического шаблона является фильтрация исходного графического изображения и выделение области интереса. Фильтрация позволяет выделить значимые области вен ладони и снизить области шумов и бликов. Для таких задач общепринятым считается использование алгоритма дискретного преобразования Фурье. Принимая во внимание, что ладонь может быть приложена со смещением в горизонтальной плоскости по отношению к сканеру, очень важно рассчитать алгоритм фильтрации с учетом этих требований.

Этап 2
Следующим этапом производится бинаризация, которая нужна для приведения всех изображений к единому виду и уменьшению влияния различной фокусировки и контрастности изображения. При бинаризации областей также отсекается часть шумов с использованием так называемой маски шума.

Этап 3
Важным этапом при обработке изображения вен ладони является выделение области интереса (рис. 3). Как правило, алгоритм основывается на методе выделения "перепонок" между указательным и средним, средним и безымянным пальцами, безымянным пальцем и мизинцем. По всем точкам контура ладони рассчитывается центр масс и находится условный центр ладони. Полученные коэффициенты угла поворота ладони приводятся к одному значению. Такой метод позволяет добиться независимости качества распознавания от угла поворота в горизонтальной плоскости относительно сканера.


Этап 4
Полученное обработанное изображение разбивается на участки дискретизации с указанием координат контрольных точек, углов поворотов линий и записывается в файл, который и представляет собой математическую модель. Очевидно, что восстановить исходное графическое изображение рисунка вен ладони невозможно. Размер шаблона в среднем не превышает одного килобайта.

По сравнению с отпечатком или рисунком вен пальцев рисунок вен ладони сложнее и имеет больше уникальных особенностей, позволяющих довольно точно строить цифровую модель и производить идентификацию по базам данных. Внутренняя сторона ладони менее восприимчива к изменению цвета кожи в отличие от тыльной стороны, поэтому именно она в основном используется для идентификации

Идентификация

Процесс идентификации основан на сравнении одного шаблона с другими, хранящимися в базе данных. Для идентификации используется алгоритм корреляции, который несет основную процессорную нагрузку для вычислительной системы. Для увеличения скорости распознавания и снижения процессорного времени часто применяется алгоритм предвыборки, использующий глобальные особенности строения венозного рисунка (хеш-код). В целом алгоритм предвыборки позволяет значительно сузить поиски по базе данных близких значений глобальных особенностей.

Отличия и преимущества

Рассматривая биометрическую технологию распознавания вен ладони, стоит отдельно выделить ее отличительные особенности и преимущества:

  • применение бесконтактного метода идентификации (рис. 4);
  • удобство использования;
  • высокая надежность (идентификация не зависит от сухости/влажности и загрязненности ладоней);
  • невозможность фальсификации (рисунок вен ладони виден только в ИК-спектре);
  • низкий процент ошибок (согласно исследованиям, проведенным компанией Fujitsu на примере более 140 тыс. ладоней, процент ошибок составляет FAR =0,00008%);
  • удобство использования.

Волею судеб поступил в один из Российских вузов. На дипломе было решено исследовать одно из направлений биометрической идентификации – идентификацию по рисунку вен ладони. На начальных стадиях было задумано предоставить к защите работающую модель устройства (но все оказалось не так просто).

Для начала нужно было понять, что же собой представляет данный метод и за счет каких средств осуществляется его реализация. Как уже писалось в статье :

«Рисунок вен формируется благодаря тому, что гемоглобин крови поглощает ИК излучение. В результате, степень отражения уменьшается, и вены видны на камере в виде черных линий. Специальная программа на основе полученных данных создает цифровую свертку. Не требуется контакта человека со сканирующим устройством».

На рисунке ниже изображен график поглощения ИК-излучения насыщенной кислородом крови и крови без кислорода.

Выбор метода
Существует два метода получения изображения рисунка вен ладони. Метод отражения (Reflection) позволяет разместить все компоненты устройства в одном корпусе, за счет чего уменьшается размер. Также снижается психологический барьер (не нужно никуда засовывать руку). Метод пропускания ИК-света (Transmission) заключается в установке ИК-подсветки с тыльной стороны ладони, а сама камера с фильтром устанавливается со стороны ладони и принимает ИК-излучение, проходящее через всю ладонь. С помощью метода пропускания получаемые изображения более детализированные.

Железо

За основу получения изображений рисунка вен ладони был выбран метод отражения. Для начала на листке бумаги была набросана предварительная модель устройства. Оно должно измерять расстояние от самого устройства до ладони идентифицируемого, измерять температуру поверхности руки (для статистики, захотелось иметь такой функционал), включать и выключать ИК-подсветку. В качестве камеры остановился на веб-камере Logitech B910. Испытания моделей устройства, а их было аж 4, выявили недостатки трех предыдущих камер. Первая модель была с камерой LinkSprite JPEG Color Camera TTL Interface . Процесс передачи изображения на ПК ограничивался скоростью порта, пришлось от нее отказаться. Также были проверены еще 2 noname веб-камеры, но получаемые изображения были очень плохого качества. Далее буду описывать только последнюю модель.

Был составлен список компонентов:

  1. Arduino Project Enclosure - небольшой корпус для Arduino проектов
  2. Infrared Thermometer - MLX90614 - ИК-термометр
  3. USB HUB - для подключения камеры и arduino одному кабелю
  4. ORduino Nano - ATMega168
  5. Infrared Proximity Sensor - Sharp GP2Y0A21YK - ИК-датчик расстояния (от 10 до 80см)
  6. 2 транзистора
  7. 2 резистора 4.7кОм, 6-470Ом
  8. 6 ИК-диодов 850нм
  9. Фототранзистор (для измерения засветки прибора посторонним светом, в экспериментах не участвовал, но планировался)
  10. USB B разъем
  11. IR Filter 850nm
  12. USB-кабель
Схема подключения (с физикой\электротехникой на вы, за последствия не ручаюсь). Процесс сборки заключался в выпиливании в центре корпуса окружности меньшего диаметра чем ИК-фильтр. Затем фильтр был приклеен на клей (супер-момент). Сначала вместо супер-момента пользовался клеющим пистолетом, но камера сильно нагревалась (особенность Logitech B910) и клей переставал держать. Выпиливалось отверстие для ИК-термометра. Также из коробки от ИК-фильтра было сделано «крепление» для сенсора расстояния. Камера была разобрана и минимизирована за счет удаления корпуса и каркаса, осталась только плата. С объектива камеры был удален ИК-фильтр, который не пропускал ИК лучи (процесс удаления фильтра можно посмотреть ). Далее камера была также установлена на дно корпуса с помощью клея. Вокруг камеры симметрично установил ИК-диоды. Чтобы не было засветки от диодов на объективе камеры, от объектива нарастил из остатков корпуса и двухстороннего скотча, что то вроде кожуха до ИК-фильтра.

В сборке устройство имеет вид:

ПО

Arduino
Управление всеми компонентами устройства (кроме камеры) должна осуществлять arduino. Это датчик расстояния, температурный датчик и ИК-подсветка. В совокупности алгоритм работы заключается в следующем:
  • с ПК поступает команда о старте работы датчика расстояния и температурного датчика с последующим выводом их значений в порт
  • как только значение датчика совпадают с занесенными значениями в ПК, происходит отключение датчика расстояния (его луч делает засветку на получаемых изображениях)
Далее если значения совпали:
  • включается ИК-подсветка
  • делается снимок
  • выключается ИК-подсветка
  • переход к начальному этапу
PC
Полученные с устройства изображения должны далее как то обрабатываться и распознаваться. Для написания ПО для ПК была выбрана программная среда Matlab. В качестве инструмента распознавания использовался стандартный компонент Matlab Neural Network Toolbox. Но перед тем как подавать изображения для обучения и распознавания их нужно обработать, а именно выделить основные признаки.

Получаемые изображения с устройства:

После подстройки алгоритма под себя:

Не плохо, да? Это тоже самое изображение, но уже что то. Теперь осталось набить базу эталонными изображениями и обучить сеть. После обучения выяснилось, что инвариантность изображений очень маленькая. Оказалось что на моей руке вены отчетливо различаются, а на некоторых руках качество изображений мягко говоря «не очень». На каждую руку было собрано по 100 эталонных изображений. В качестве отрицательной выборки использовались зашумленные изображения и изображения без рук (локти, кулаки и т.п.). В выборку были включены руки двух человек.

После обучения приступили к проверке устройства. Ошибки второго рода имеют место быть. Пришлось снижать порог совпадения с эталонами. В следствии чего иногда бывали ложные пропуски. На практике же, ошибки второго рода случались из-за неправильного расположения руки перед устройством, либо за счет смазывания получаемых снимков из-за движения рук. Тут не хватило времени на эксперименты.

Выводы

Тут можно лишь сказать, что тема интересная и она до конца не раскрылась из-за нехватки времени и необходимых навыков. Также не успел проверить устройство на «неживые сравнения». Не был задействован фототранзистор (для подстройки камеры под освещение) и датчик температуры (хотя информация с него получалась, но никак не учитывалась).

Исходники для arduino и matlab есть, но стыдно показывать, ибо писал\переписывал очень торопясь успеть, попутно переделывая устройство.

Используемые источники

  1. Nadort, A. The Hand Vein Pattern Used as a Biometric Feature : Literature thesis for Master of Science programmed Physics of Life / A. Nadort, - Amsterdam: Medical Natural Sciences at the Free University, 2007. – 179 с.
  2. Fuksis, R. Palm Vein Biometrics Based on Palm Infrared Imaging and Complex Matched Filtering : The 12th ACM Workshop on Multimedia and Security / R. Fuksis, M. Pudzs, M. Greitans, - Rome, 2009. – 27 с.
Похожие статьи