Внутреннее устройство жесткого диска. Подробно и просто о жестком диске он же HDD(hard disk drive)

29.07.2019

Во всех современных компьютерах имеется жесткий диск, который предназначен для хранения данных, а также для загрузки операционной системы. Лет 15-20 назад практически все компьютеры оснащались дисководами для гибких дисков, которые использовались для загрузки программ и операционной системы. Операционная система MS-DOS загружалась в оперативную память с дискеты.

Но постепенно, как того и требует прогресс, размер про грамм стал увеличиваться. Для работы в современных операционных системах требуется объем дискового пространства как минимум несколько сот мегабайт. Представляете, сколько дискет понадо бится, чтобы сохранить этот объем? Гибкие диски, несмотря на все ухищрения разработчиков, уже не могли вместить достаточное количество файлов, со держащих графические образы компьютерных игр и звуки. А пользователи требовали все более красочных игр. И, наконец, было принято решение, в результате которого разработали новое устройство - жесткий диск.

Жесткий диск, он же Hard Disk Drive, HDD, винчестер, накопитель на жестких магнитных дисках (НЖМД), или с использова нием жаргона "винт", является прямым потомком дисковода для гибких дисков.

Основное предназначение жесткого дис ка - он должен предоставить пользователю дисковое пространство, столь нужное для хранения файлов операционной системы и всех необходимых программ.

Особенностью жесткого диска в отличие от дисковода для гибких дисков является высокая надежность хранения данных.

Единственный недостаток нового изобретения - отсутствие мобильности носителя, из-за чего остро встала проблема переноса данных. Но жесткий диск изначально создавал ся как несъемное устройство.

Сведения из истории: в 1973 году на фирме IBM по новой технологии был разработан первый жесткий диск, который мог хранить до 16 Кбайт информации. Поскольку этот диск имел 30 цилиндров (дорожек), каждая из которых была разбита на 30 секторов, то поначалу ему присвоили незамысловатое название -30/30. По аналогии с автоматическими винтовками, имеющими калибр 30/30, такие жесткие диски получили прозвище «винчестер».



Внешне жесткий диск похож на небольшую металлическую коробку.

Сверху на корпусе, как правило, имеется наклейка, на которой нанесены основные технические параметры данной модели, такие как на именование производителя, название модели, номинальное напряжение пи тания, информация о положении перемычек, предназначенных для конфи гурирования винчестера, и т. п. Снизу на корпусе прикреплена печатная плата, представляющая собой встроенный контроллер жесткого диска, ко торый необходим для обеспечения его нормальной работы.

Корпус винчестера

Корпус винчестера защищает жесткий диск от повреждений. Воздух, которым заполнен корпус, обязательно должен быть очищен от пыли, иначе даже самая маленькая частица при попадании внутрь может привести в негодность все устройство. Поэтому практически все модели винчестеров имеют фильтр, который представляет собой небольшое окошко, закрытое прочным материалом, пропускающим незначительное количество воздуха.

Внутри корпуса размещаются практически все элементы, необходимые для работы винчестера: носитель информации, который представляет собой все те же, но жесткие диски, а также устройство считывания/записи информа ции (магнитные головки и устройство позиционирования).

Габаритные размеры современных жестких дисков характеризуются так на зываемым форм-фактором, который указывает горизонтальный и верти кальный размеры корпуса. Возможны следующие горизонтальные размеры: 1,8; 2,5; 3,5 или 5,25", из них наиболее распространены два последних (хотя самый последний встречается все реже и реже).

Носитель информации

Винчестер содержит один или несколько дисков (platters), то есть это носитель, который смонтирован на оси-шпинделе, приводимом в движение специальным двигателем (часть привода). Скорость вращения современных винчестеров может быть 5400, 7200, 10000 об/мин. Достигнуты скорости вплоть до 15 000 об/мин., но такие винчестеры пока что слишком дороги для среднего пользователя. Понятно, что чем выше скорость вращения, тем быстрее считывается информация с диска. Следует иметь в виду, что чем выше скорость вращения, тем выше уровень шума, издаваемый винчесте ром. Это является довольно неприятной платой за высокую скорость работы.

Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины, на которые и нанесен специальный магнитный слой (покрытие). С обеих сторон диски покрыты тончайшим слоем ферромагнитного материала (окисью какого-нибудь металла), подобного тому, что применяется для производства, например, дискет. От прочности покрытия зависят некоторые эксплуатационные характеристики, к примеру, ударопрочность винчестеров. В качестве рабочей поверхности обычно ис пользуют обе стороны каждого диска, кроме дисков, расположенных по краям пакета - у этих дисков внешние поверхности, повернутые в сторону корпуса, для хранения информации не используются. Они являются защит ными.

Количество дисков может быть различным – от одного до пяти и выше, число рабочих поверхностей при этом соответственно в два раза больше, правда, не всегда. Иногда наружные поверхности крайних дисков или одного из них не используются для хранения данных, при этом число рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки

Наиболее важной частью любого накопителя являются головки чтения-записи (read-write head). Головки представляют собой магнитные управляемые контуры с сердечни ками, на обмотки которых подается переменное напряжение. Принцип дей ствия очень похож на принцип работы головок обычного магнитофона, только требования к ним предъявляются значительно более жесткие.

Количество магнитных головок всегда равно количеству физических по верхностей, используемых для хранения данных. Каждая пара головок одета на своеобразную "вилку", обхватывающую диск с обеих сторон. Данная "вилка" имеет очень длинный "хвост", который заканчивает массивным хво стовиком, составляющим противовес головкам и их несущим. Когда винче стер не работает, головки благодаря упругости "вилки" прижимаются к по верхности диска, что позволяет исключить их "дребезг" во время транспор тировки. Все магнитные головки объединены в единый блок, что позволяет организовать их синхронное перемещение.

Практически все современные жесткие диски имеют функцию автоматиче ской "парковки" головок. Парковкой называется процесс перемещения магнитных головок в специальную зону диска, которая называется парковочной зоной" (от англ. Landing Zone). Эта зона не содержит абсолютно никакой по лезной информации, кроме специальной сервисной метки, указывающей на местоположение места "парковки". В "запаркованном" состоянии жесткий диск можно транспортировать при достаточно плохих физических услови ях - вибрация, легкие удары, сотрясения.

Функция "парковки" реализована достаточно просто. В нерабочем состоя нии хвостовик блока головок "приклеивается" к небольшому магниту, рас положенному в устройстве позиционирования. При поступлении напряже ния питания на жесткий диск генерируется достаточно мощный электро магнитный импульс, который "отрывает" хвостовик от посадочного места. Пока жесткий диск работает, постоянно удерживаемое электромагнитное поле не дает хвостовику "прилипнуть" к магниту. Когда же напряжение пи тания исчезает, то головки за счет притяжения постоянного магнита прак тически мгновенно перемещаются в зону парковки, где они благополучно приземляются на поверхность дисков.

Заметим, что в современных винчестерах головки как бы «летят» на расстоянии доли микрона от поверхности дисков, не касаясь их.

Устройство позиционирования

Устройство позиционирования, которое перемещает магнитные головки, внешне очень похоже на башенный кран. С одной стороны находятся длинные тонкие несущие магнитных головок, а с другой - короткий и зна чительно более массивный хвостовик с обмоткой электромагнитного приво да. Обмотку позиционера окружает статор, представляющий собой постоян ный магнит. При подаче в обмотку электромагнита тока определенной величины и полярности хвостовик начинает поворачиваться в соответст вующую сторону с ускорением, пропорциональным силе тока. При измене нии полярности тока хвостовик начинает движение в обратную сторону. Динамически изменяя уровень и полярность тока, можно устанавливать магнитные головки в любое возможное положение (от центра до края дис ков). Такую систему иногда называют Voice Coil (звуковая катушка) - по аналогии с диффузором громкоговорителя. Данное устройство позициони рования еще называют линейным двигателем. Применение в качестве дви жущей силы электромагнитного поля придает головкам равномерное ли нейное перемещение, чего так не хватает шаговым двигателям, которые ис пользуются в дисководах для гибких дисков.

Для определения необходимого положения головок служат специальные сервисные метки, записанные на носитель при изготовлении винчестера и считываемые при позиционировании. В некоторых моделях винчестеров под сервисную информацию отводят отдельную поверхность и специализи рованную магнитную головку, позволяющую с высокой скоростью опреде лить точное местоположение остальных головок, двигающихся синхронно с ней. Если сервисные метки записаны на тех же дорожках, что и данные, то для них выделяется специальный сектор, а чтение производится теми же головками, что и чтение данных. Благодаря использованию линейного дви гателя появилась возможность "тонкой настройки" головок путем их незна чительного перемещения относительно дорожки, что помогает более точно отследить центр окружности сервисной метки. В результате повышается достоверность считываемых данных и исключается необходимость времен ных затрат на процедуры коррекции положения головок, как это происхо дит в дисководах.

Плата электроники

Внутри любого винчестера обязательно находится печатная плата с электронными компонентами. Печатная плата, на которой расположены электронные компоненты систе мы управления жестким диском, обычно прикрепляется к нижней плоско сти корпуса при помощи обычных винтов. В зависимости от модели элек троника может быть либо закрыта металлической пластиной, либо открыта для любых механических воздействий - производители по-разному пред ставляют реальные условия эксплуатации жесткого диска. С внутренней частью винчестера плата соединяется при помощи специального разъема.

Плата электроники предназначена для управления работой механических подвижных частей устройства и формирования электрических импульсов при чтении/записи. Она содержит:

  1. микропроцессор, управляющий всей остальной электроникой жесткого диска;
  2. буферную память, предназначенную для временного хранения данных, которые записываются на диск или считываются с него;
  3. микросхему ПЗУ, используемую для хранения алгоритмов работы, как основного микропроцессора, гак и всех остальных электронных компо нентов;
  4. генератор, питающий переменным током двигатель дисков;
  5. сложную сервисную систему, которая управляет устройством позициони рования блока головок на требуемую дорожку (цилиндр) в соответствии с поступающими сигналами;
  6. усилители записи, формирующие электрические импульсы, которые по даются на магнитные головки при записи данных;
  7. усилители считывания и формирователи выходных сигналов при считы вании информации.

Микропроцессор представляет собой специализированную микросхему, внутренняя структура которой направлена на обработку массивов данных, поступающих в схему электроники, как со стороны магнитных головок, так и со стороны компьютера. Основной задачей этой микросхемы является преобразование цифровых потоков данных, поступающих из компьютера в электромагнитные импульсы, записываемые на диск, а также обратная опе рация: преобразования считываемых импульсов в поток цифровых данных. Помимо этого микропроцессор занимается постоянным наблюдением за состоянием всех функций винчестера, чтобы можно было прогнозировать возможный выход его из строя.

Буферная память необходима жесткому диску, чтобы немного согласовать разницу в скорости работы интерфейса с реальной скоростью чте ния/записи с дисков. При записи информации она сначала сохраняется в буфере, а уже затем записывается на поверхность дисков. При чтении ин формации используется немного другой режим: данные передаются сразу же на интерфейс и параллельно записываются в буферную память. При по вторном обращении к этим же данным чтение производится уже из буфера. На современных жестких дисках объем буферной памяти (иногда встречает ся название кэш-память винчестера) может достигать 2 Мбайт и более, что является оптимальным для большинства выполняемых компьютером задач.

Микросхема ПЗУ предназначена для хранения алгоритмов работы микро процессора, а также технической информации, которую можно прочитать при помощи различных тестовых утилит (модель винчестера, серийный но мер и т. д.). Некоторые дешевые модели жестких дисков хранят всю слу жебную информацию на дисках и при каждом включении загружают ее в обыкновенный модуль оперативной памяти.

Интерфейсная логика представляет целый набор электронных компонентов, задача которых сводится к организации соединения с компьютером, т. е. создании физического соединения интерфейса жесткого диска с контролле ром компьютера.

Важным компонентом электронной платы являются разъемы для подклю чения соединительного кабеля и напряжения питания (рис. 10.3). Между этими разъемами, как правило, располагается набор перемычек, при помо щи которых изменяется конфигурация жесткого диска (Master, Slave). Опи сание всех возможных вариантов вы, скорее всего, найдете на наклейке, которая имеется на верхней плоскости корпуса.

Плата интерфейсной электроники современного винчестера, как вы уже поняли, представляет собой самостоятельное устройство с собственным процессором, памятью, устройствами ввода/вывода и прочими атрибутами, присущими любому компьютеру. По сути, жесткий диск это компьютер в компьютере.

Многие винчестеры имеют на плате электроники специальный технологи ческий интерфейс с разъемом, через который при помощи стендового обо рудования можно выполнять различные сервисные операции с накопи телем - тестирование, форматирование, поиск и "фиксацию" дефектных участков.

Цель этой статьи - описать устройство современного жёсткого диска, рассказать о его главных компонентах, показать, как они выглядят и называются. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жестких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.

Зелёный текстолит с медными дорожками, разъемами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она служит для управления работой жесткого диска. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA), специалисты также называют его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату и изучим размещённые на ней компоненты.

Первым в глаза бросается большой чип, расположенный посередине – микроконтроллер, или процессор (Micro Controller Unit, MCU). На современных жёстких дисках микроконтроллер состоит из двух частей – собственно центрального процессора (Central Processor Unit, CPU), который производит все вычисления, и канала чтения/записи (read/write channel) - особого устройства, преобразующего поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объем памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки. Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько нам известно, только Hitachi/IBM указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, об объёме кэша остаётся только гадать.

Следующий чип – контроллер управления двигателем и блоком головок, или «крутилка» (Voice Coil Motor controller, VCM controller). Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Ядро VCM-контроллера может работать даже при температуре в 100° C.

Часть прошивки диска хранится во флэш-памяти. При подаче питания на диск микроконтроллер загружает содержимое флэш-чипа в память и приступает к исполнению кода. Без корректно загруженного кода, диск даже не пожелает раскручиваться. Если на плате отстутствует флэш-чип, значит, он встроен в микроконтроллер.

Датчик вибрации (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшую вибрацию. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено как минимум два датчика вибрации.

На плате имеется ещё одно защитное устройство - ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Теперь рассмотрим гермоблок.

Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится ваккум. На самом деле это не так. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.

Сама крышка не представляет собой ничего интересного. Это просто кусок металла с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.

Драгоценная информация хранится на металлических дисках, называемых также блинами или пластинами (platters). На фотографии вы видите верхний блин. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между блинами, а также над верхним из них, мы видим специальные пластины, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны.

Вид блинов и сепараторов сбоку.

Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона - это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.

На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.

Жёсткий диск - механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин.

Теперь снимем верхний магнит и посмотрим, что скрывается под ним.

В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом - удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача - ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жестких дисках. На нашем накопителе, второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.

Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок, образуют позиционер (actuator) - устройство, которое перемещает головки. Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Это защитный механизм, освобождающий БМГ после того как шпиндельный двигатель наберёт определённое число оборотов. Происходит это за счёт давления воздушного потока. Фиксатор защищает головки от нежелательных движений в парковочном положении.

Теперь снимем блок магнитных головок.

Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.

Подшипник.

На следующей фотографии изображены контакты БМГ.

Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для улучшения проводимости.

Это классическая конструкция коромысла.

Маленькие чёрные детали на концах пружинных подвесов, называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки - это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью блинов. На современных жёстких дисках, головки двигаются на расстоянии 5-10 нанометров от поверхности блинов. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Сами считывающие и записывающие элементы находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп.

Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.

Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель - это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.

Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок очень слаб. На современных дисках он имеет частоту около 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск. У этого жёсткого диска к каждой головке ведёт шесть дорожек. Зачем так много? Одна дорожка - земля, ещё две - для элементов чтения и записи. Следующие две дорожки - для управления мини-приводами, особыми пьезоэлектрическими или магнитными устройствами, способными двигать или поворачивать слайдер. Это помогает точнее задать положение головок над треком. Последняя дорожка ведёт к нагревателю. Нагреватель служит для регулирования высоты полёта головок. Нагреватель передаёт тепло подвесу, соединяющему слайдер и коромысло. Подвес изготавливается из двух сплавов, имеющих разные характеристики теплового расширения. При нагреве подвес изгибается к поверхности блина, таким образом, уменьшая высоту полёта головки. При охлаждении подвес выпрямляется.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.

На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.

Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).

Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).

Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.

Теперь понятно, за счёт чего создается пространство для головок - между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо - высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.

Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.

Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха.

Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.

Статья скопирована с

Как выглядит современный жёсткий диск (HDD) внутри? Как его разобрать на части? Как называются части и какие функции в общем механизме хранения информации выполняют? Ответы на эти и другие вопросы можно узнать здесь, ниже. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жёстких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.


Зелёная закреплённая винтами пластина с проступающим узором дорожек, разъёмами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она выполняет функции электронного управления работой жёсткого диска. Её работу можно сравнить с укладкой в магнитные отпечатки цифровых данных и распознание обратно по первому требованию. Например, как прилежный писарь с текстами на бумаге. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA). В среде специалистов принято называть его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату (понадобиться отвертка «звёздочка» T-6) и изучим размещённые на ней компоненты.


Первым в глаза бросается большой чип, расположенный посередине – Система на кристалле (System On Chip, SOC). В ней можно выделить два крупных составляющих:

  1. Центральный процессор, который производит все вычисления (Central Processor Unit, CPU). Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.
  2. Канал чтения/записи (read/write channel) – устройство, преобразующее поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Так же выполняет слежение за позиционированием головок. Иными словами, создает магнитные образы при записи и распознает их при чтении.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объём памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки (firmware). Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько известно, только производитель HGST указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, о реальном объёме кэша остаётся только гадать. В спецификации ATA составители не стали расширять ограничение, заложенное в ранних версиях, равное 16 мегабайт. Поэтому, программы не могут отобразить объем более максимального.

Следующий чип – контроллер управления шпиндельным двигателем и звуковой катушкой, перемещающий блок головок (Voice Coil Motor and Spindle Motor controller, VCM&SM controller). На жаргоне специалистов – это «крутилка». Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Так же при отключении питания переключает останавливающийся двигатель в режим генерации и полученную энергию подает на звуковую катушку для плавной парковки магнитных головок. Ядро VCM-контроллера может работать даже при температуре в 100°C.

Часть программы управления (прошивки) диска хранится во флэш-памяти (на рисунке обозначено: Flash). При подаче питания на диск микроконтроллер загружает сначала маленькое boot-ПЗУ внутри себя, а дальше переписывает содержимое флэш-чипа в память и приступает к исполнению кода уже из ОЗУ. Без корректно загруженного кода, диск даже не пожелает запускать двигатель. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер. На современных дисках (где-то с 2004 года и новее, однако исключение составляют жёсткие диски Samsung и они же с наклейками от Seagate) flash-память содержит таблицы с кодами настроек механики и головок, которые уникальны для данного гермоблока и не подойдут к другому. Поэтому операция «перекинуть контроллер» всегда заканчивается либо тем, что диск «не определяется в BIOS», либо определяется заводским внутренним названием, но все равно доступ к данным не даёт. Для рассматриваемого диска Seagate 7200.11 утрата оригинального содержимого flash-памяти приводит к полной потере доступа к информации, так как подобрать или угадать настройки не получится (во всяком случае, автору такая методика не известна).

На youtube-канале R.Lab есть несколько примеров перестановки платы с перепайкой микросхемы c неисправной платы на исправную:
PC-3000 HDD Toshiba MK2555GSX PCB change
PC-3000 HDD Samsung HD103SJ PCB change

Датчик удара (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. Ещё при падении может заклинить шпиндельный двигатель, но об этом позже. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшие механические колебания. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено, кроме основного, ещё два дополнительных датчика вибрации. На нашей плате дополнительные датчики не припаяны, но места под них есть - обозначены на рисунке как «Vibration sensor».

На плате имеется ещё одно защитное устройство – ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Электроника для старых дисков была менее интегрированная, и каждая функция была разделена на одну и более микросхем.


Теперь рассмотрим гермоблок.


Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится вакуум. На самом деле это не так. Воздух нужен для аэродинамического взлета головок над поверхностью. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.


Сама крышка не представляет собой ничего интересного. Это просто стальная пластина с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.


Информация хранится на дисках, называемых также «блинами», магнитными поверхностями или пластинами (platters). Данные записываются с двух сторон. Но иногда с одной из сторон головка не установлена, либо физически головка присутствует, но отключена на заводе. На фотографии вы видите верхнюю пластину, соответствующую головке с самым большим номером. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между пластинами, а также над верхней из них, мы видим специальные вставки, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны. Ниже приведен пример модели прохождения потока воздуха внутри гермоблока.


Вид на пластины и сепараторы сбоку.


Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона – это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.


На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.


Парковочная площадка накопителя Western Digital 3.5”

В случае парковки головок внутри пластин для съёма блока магнитных головок нужен специальный инструмент, без него снять БМГ очень сложно без повреждения. Для внешней парковки можно вставить между головками пластиковые трубочки, подходящие по размеру, и вынуть блок. Хотя, и для этого случая так же есть съемники, но они более простой конструкции.

Жёсткий диск – механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин


Теперь снимем верхний магнит и посмотрим, что скрывается под ним.


В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом – удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача – ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жёстких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.


Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) – устройство, которое перемещает головки.

Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Он бывает двух типов: магнитный и воздушный (air lock). Магнитный работает как простая магнитная защёлка. Высвобождение осуществляется подачей электрического импульса. Воздушная защёлка освобождает БМГ после того, как шпиндельный двигатель наберёт достаточное число оборотов, чтобы давление воздуха отодвинуло фиксатор с пути звуковой катушки. Фиксатор защищает головки от вылета головок в рабочую область. Если по какой-то причине фиксатор со своей функцией не справился (диск уронили или ударили во включенном состоянии), то головки прилипнут к поверхности. Для дисков 3.5“ последующее включение из-за большей мощности мотора просто оторвет головки. А вот у 2.5“ мощность мотора меньше и шансы восстановить данные, высвободив «из плена» родные головки, довольно высоки.

Теперь снимем блок магнитных головок.


Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.


Подшипник.


На следующей фотографии изображены контакты БМГ.


Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для предотвращения окисления. А вот со стороны платы электроники окисление случается частенько, что приводит к неисправности HDD. Удалить окисление с контактов можно стирательной резинкой (eraser).


Это классическая конструкция коромысла.


Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки – это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью магнитных дисков. На современных жёстких дисках головки двигаются на расстоянии 5-10 нанометров от поверхности. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Ещё попадание пыли может вызвать царапины. От них образуются новые пылинки, но уже магнитные, которые прилипают к магнитному диску и вызывают новые царапины. Это приводит к тому, что диск быстро покрывается царапинами или на жаргоне «запиливается». В таком состоянии ни тонкий магнитный слой, ни магнитные головки уже не работают, и жёсткий диск стучит (клик смерти).

Сами считывающие и записывающие элементы головки находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп. Ниже приведен пример фотографии (справа) через микроскоп и схематическое изображение (слева) взаимного расположения пишущего и читающего элементов головки.


Рассмотрим поверхность слайдера поближе.


Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.


Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель – это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.


Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту более 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления. Установить же усилитель прямо на голове нельзя, так как она существенно нагревается во время работы, что делает не возможным работу полупроводникового усилителя, вакуумно-ламповых усилителей таких малых размеров ещё не придумали.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.


На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.


Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).


Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).


Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.


Теперь понятно, за счёт чего создается пространство для головок – между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо – высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.


Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.


Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха. Однако, если жёсткий диск поместить в воду, то она наберется внутрь через фильтр! И это совсем не означает, что попавшая внутрь вода будет чистая. На магнитных поверхностях кристаллизуются соли и наждачка вместо пластин обеспечена.

Немного подробнее про шпиндельный двигатель. Схематически его конструкция показана на рисунке.


Внутри spindle hub закреплен постоянный магнит. Обмотки статора, меняя магнитное поле, заставляют ротор вращаться.


Моторы бывают двух видов, с шариковыми подшипниками и с гидродинамическими (Fluid Dynamic Bearing, FDB). Шариковые перестали использовать более 10 лет назад. Это связано с тем, что у них биение высокое. В гидродинамическом подшипнике биения намного ниже и работает он значительно тише. Но есть и пару минусов. Во-первых, он может заклинить. С шариковыми такого явления не происходило. Шариковые подшипники если и выходили из строя, то начинали громко шуметь, но информация хоть медленно, но читалась. Сейчас же, в случае клина подшипника, нужно при помощи специального инструмента снять все диски и установить их на исправный шпиндельный двигатель. Операция очень сложная и редко приводит к удачному восстановлению данных. Клин может возникнуть от резкого изменения положения за счет большого значения силы Кориолиса, действующей на ось и приводящей к ее сгибанию. Например, есть внешние 3.5” диски в коробочке. Стояла коробочка вертикально, задели, упала горизонтально. Казалось бы, не далеко улетел то?! А нет - клин двигателя, и никакой информации уже не достать.

Во-вторых, из гидродинамического подшипника может вытечь смазка (она там жидкая, ее довольно много, в отличие от смазки-геля, используемой шариковых), и попасть на магнитные пластины. Чтобы предотвратить попадание смазки на магнитные поверхности используют смазку с частицами, имеющими магнитные свойства и улавливающими их магнитные ловушки. Еще используют вокруг места возможной протечки абсорбционное кольцо. Вытеканию способствует перегрев диска, поэтому важно следить за температурным режимом эксплуатации.


Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.


Обновление 2018, Сергей Яценко

Перепечатка или цитирование разрешены при условии сохранения ссылки на перво

Как устроен жесткий диск? Какие бывают жесткие диски? Какую роль они выполняют в компьютере? Как взаимодействуют с другими компонентами? Какие параметры учитывать при выборе и покупке жесткого диска, вы узнаете из этой статьи.

НЖМД - сокращенное название от "Накопитель на Жестких Магнитных Дисках ". Так же вы встретите английское HDD - и сленговое Винчестер или сокращенно Винт .

В компьютере жесткий диск отвечает за хранение данных. Операционная система Windows, программы, фильмы, фотографии, документы, вся информация, которую вы загружаете в компьютер, сохраняется на жестком диске. А информация в компьютере это самое ценное! Если вышел из строя процессор или видеокарта, их можно купить и заменить. А вот потерянные семейные фотографии из отпуска прошлым летом или данные бухгалтерии небольшого предприятия за год не так-то просто восстановить. Поэтому надежности хранения данных уделяется особое внимание.

Почему же прямоугольная металлическая коробка называется диском? Для ответа на этот вопрос нам нужно заглянуть внутрь и узнать как жесткий диск устроен. На картинке ниже вы можете посмотреть из каких деталей жесткий диск состоит и какие функции выполняет каждая деталь Нажмите для увеличения. (Взято с сайта itc.ua)

Предлагаю так же посмотреть отрывок из передачи канала Discovery о том как устроен и работает жесткий диск.

Еще три факта которые вам надо знать о жестких дисках.

  1. Жесткий диск самая медленная деталь компьютера. Когда компьютер "завис", обратите внимание на индикатор работы жесткого диска. Если он часто мигает или горит непрерывно, значит жесткий диск выполняет команды одной из программ а все остальные простаивают, ожидая своей очереди. Если операционной системе не хватает быстродействующей оперативной памяти для запуска программы, она использует место на жестком диске, что очень сильно тормозит весь компьютер. Поэтому один из способов увеличить скорость работы компьютера - увеличить размер оперативной памяти.
  2. Жесткий диск так же является самой хрупкой деталью компьютера. Как вы узнали из видео, двигатель раскручивает диск до нескольких тысяч оборотов в минуту. При этом магнитные головки "парят" над диском в воздушном потоке, созданном вращающимся диском. Расстояние между диском и головками в современных устройствах составляет около 10 нм. Если в этот момент подвергнуть диск удару или тряске, головка может коснуться диска и повредить поверхность с хранящимися на ней данными. В результате появляются так называемые "badblocks " - нечитаемые области, из-за которых компьютер не может считать какой-нибудь файл или загрузить систему. В выключенном состоянии головки "паркуются" за пределами рабочей области и перегрузки от удара не так страшны жесткому диску. Делайте, пожалуйста, резервные копии важных данных!
  3. Объем жесткого диска зачастую немного меньше того, который указывает продавец или производитель. Причина в том, что изготовители указывают объем диска, исходя из того, что в одном гигабайте 1 000 000 000 байт, в то время как их там 1 073 741 824.

Покупаем жесткий диск

Если вы решили увеличить объем для хранения информации в компьютере подключив дополнительный жесткий диск или заменив старый более вместительным, что вам потребуется знать при покупке?

Во-первых, загляните под крышку системного блока вашего компьютера. Вам необходимо выяснить какой интерфейс подключения жесткого диска поддерживает материнская плата. На сегодняшний день наиболее распространены стандарты SATA и отживающий свой век IDE . Их легко отличить по внешнему виду. На картинке слева показан фрагмент материнской платы, которая оснащена разъёмами обоих видов, но на вашей, скорее всего окажется один из них.

Существует три версии интерфейса SATA . Они отличаются скоростью передачи данных. SATA , SATA II и SATA III со скоростью 1.5, 3 и 6 гигабайт в секунду соответственно. Все версии интерфейсов SATA выглядят одинаково и совместимы между собой. Вы можете подключить их в любой комбинации, в результате скорость передачи данных будет ограничена более медленной версией. При этом скорость работы жесткого диска еще меньше. Поэтому потенциал быстрых интерфейсов сможет раскрыться лишь с появлением новых быстродествующих накопителей.

Если вы решили приобретать дополнительный жесткий диск SATA, проверьте есть ли у вас интерфейсный кабель как на картинке. В комплекте с диском он не продается. (Обычно они комплектуются к материнской плате.) Так же среди разъемов блока питания должен быть хотя один свободный для подключения жесткого диска или вам может понадобится переходник со старого стандарта на новый.

Теперь о самом жестком диске: Главным параметром является, конечно, емкость. Как я упоминал выше, учтите, что она окажется немного меньше заявленной. Для операционной системы и программ требуется 100 - 200 Гигабайт, что по современным меркам совсем немного. Сколько вам может понадобиться дополнительного пространства вы можете определить опытным путем. Большие объемы могут потребоваться,например, для записи видео высокого качества. Современные фильмы в формате HD достигают нескольких десятков Гигабайт.

Кроме этого среди основных параметров указывают:

  1. Форм-фактор - размер диска. Диски размером 1.8 и 2.5 дюйма используются в . Для стационарного компьютера следует приобретать диск 3.5 дюйма. Разъемы SATA у них одинаковые и диск для ноутбука может работать в стационарном компьютере. Но диски маленьких размеров сделаны с упором на компактность и низкое энергопотребление, а по быстродействию уступают более крупным моделям. И стоят при этом дороже.
  2. RPM - скорость вращения диска. Измеряется в количестве оборотов в минуту (RPM - сокращение от revolutions per minute ). Чем больше скорость вращения, тем быстрее диск записывает и считывает информацию. Но при этом потребляет больше энергии. На сегодняшний день наиболее распространены диски с 5400 RPM и 7200 RPM . Более низкие обороты чаще встречаются в дисках для ноутбуков, дисках большой емкости (более двух терабайт) и так называемых "зеленых" дисках, названных так из-за пониженного энергопотребления. Так же существуют жесткие диски со скоростью вращения 10000 RPM и 15000 RPM . Они рассчитаны для работы в высоконагруженных серверах и имеют повышенный ресурс надежности, но и стоят намного дороже обычных.
  3. Производитель . На данный момент на рынке накопителей несколько крупных производителей. Среди них идет довольно жесткая конкуренция, поэтому качеством они ничем не уступают друг другу. Поэтому можете выбирать любое из известных имен: Hitachi, HP, Seagate, Silicon Power, Toshiba Transcend, Western Digital.

Жестким диском (Hard Disk Drive, HDD) компьютера является место хранения, которое является основным, информации (различные данные, приложенные программы, операционная система). Необходимая информация в нужное время будет считываться процессором с жесткого диска, затем будет обрабатываться, а потом уже конечный результат обработанной информации должен быть записан на жесткий диск.

В 1957 году фирмой IBM был разработан самый первый жесткий диск, и был он разработан еще до создания персонального компьютера. За него бы пришлось выложить «кругленькую» сумму, хотя объем у него был всего лишь 5 Мб. Затем был разработан жесткий диск с емкостью 10 Мб специально для персонального компьютера IBM PC XT. Винчестер имел всего 30 дорожек и еще по 30 секторов в каждой дорожке. «Винчестеры» - именно так стали называть жесткие диски, если сокращенно, то «винтами», это пошло из аналогии с маркировкой карабина фирмы Winchester - «30/30», который являлся многозарядным.

Ну и что же из себя представляет конструкция жесткого диска? Основой винчестера является блок металлических дисков, которые покрыты специальным веществом, способное отлично поддерживать хранение воздействия магнитного поля (к примеру, оксид железа). Винчестеры в наше время должны содержать от одного до трех подобных дисков. Жесткие диски должны иметь прекрасную балансировку и действительно ровную поверхность, потому что при вращении скорость бывает довольно высокой (7200 или 10000 оборотов в минуту - это стандартные скорости), но при этом у головок должна быть высокой точность позиционирования.

Магнитные головки специально используются для записи на диск любой информации (чаще всего расположены с обеих сторон диска, и по две на каждый диск), которые способны сформировать под воздействием токовых импульсов магнитное поле. Подобная магнитная головка старается намагничивать участок диска моментом, который является магнитным, определенной направленности (логическая «единица» или логический «ноль», но это в зависимости от направленности момента, который является магнитным). Процесс намагничивания должен происходить при помощи подачи токового импульса в нужный момент времени, при этом в определенном месте должна позиционироваться магнитная головка.

Магниторезистивные головки специально используют для прочтения с диска информации, они могут реагировать на изменение магнитного поля путем при помощи силы тока, которая возбуждается в головке. Подобный аналоговый сигнал должен пройти считывание, преобразование в цифровую форму, а затем податься в компьютерную систему.

При помощи дорожек информация на дисках может размещаться в качестве окружностей, которые являются концентрическими. В процессе работы магнитные головки должны перемещаться с одной на другую дорожки. В винчестерах, которые мы используем в наше время, чтобы произвести перемещение магнитных головок используют привод, который является соленоидным . Головки перемещаются вокруг своей оси, ниже на рисунке должна быть представлена их схема перемещения. Катушка, которая закреплена на обратной стороне головок, должна притягиваться в ту или другу сторону при помощи электромагнита. Из-за того, что диски винчестера могут вращаться, то, головка при перемещении в ту или другую сторону, должна иметь доступ практически к любой точке диска. Головки, которые уже считались после отключения питания, начинают уводиться с поверхности диска, затем начинают парковаться. Не допускается падение головок на поверхность диска!

Принцип функционирования записи на читайте по ссылка.

Цилиндр

В качестве окружностей, которые являются концентрическими, информация на диске и продолжает свое хранение. Все головки должны перемещаться одновременно, потому что блок головок является одним целым. Лишь одну сторону одного диска может обслужить каждая головка. Все головки должны находиться над одной и той же дорожкой в любой момент времени, но над различными дисками. Это все образует цилиндр в вертикальной плоскости.

Сектора

Объем максимально возможной хранимой информации жесткого диска определяется произведением трех составляющих: количества головок, количества секторов и количества цилиндров.

С точки зрения, которая является технологической, легче всего начать изготавливать жесткие диски с меньшим количеством дисков, но при этом нужна большая плотность дорожек на одном диске.

Логическое и физическое размещение

Также следует отметить такой нюанс. А именно логическое размещение и физическое размещение секторов, цилиндров, головок.

Размещение, которое является физическим, мы уже затронули ранее. Однако, логически (ведь именно так компьютер «видит» их) программа Setup должна занести данные параметры несколько иначе (чаще всего должны указывать на крышке жесткого диска), а также именно с логической разбивкой жесткого диска в дальнейшем оперирует компьютер. Трансляция параметров диска является специальной процедурой, которая позволяет согласовывать логическое и физическое размещение параметров диска. Блок трансляции должен находиться на самом жестком диске, а затем преобразовать логические координаты в физические. При этом он должен обеспечивать доступ головок к нужной области физического диска.

Проблемы во время изготовления жестких дисков

Во время изготовления винчестеров можно и не избежать достаточного процента секторов, которые являются браковочными, а также и дорожек (главное, чтобы на винчестере был нужный объем). При низкоуровневом форматировании, когда дисковое пространство разбивается на логические цилиндры, головки, сектора, такие браковочные участки помечаются и в дальнейшей эксплуатации данного винчестера не учитываются.

Похожие статьи