Компьютеры, не совместимые с IBM PC. Что такое IBM-совместимый компьютер

30.04.2019

Конфигуратор компьютера с проверкой совместимости позволяет быстро собрать системный блок с необходимыми пользователю техническими характеристиками. С помощью нашего онлайн-конструктора вы без труда соберёте надёжную офисную машину, домашний мультимедийный системный блок или мощную геймерскую конфигурацию.

Сборка компьютера онлайн

В наше время, как и многие годы до этого, популярностью пользуется сборка компьютера из самостоятельно подобранных комплектующих. Это хорошая возможность подобрать то, что хотите именно вы. Вас ничего не ограничивает, для сборки доступны сотни вариантов, среди которых обязательно найдётся тот, что вам по душе.

Наш интернет-магазин предлагает такую возможность, как сборка компьютера онлайн, через конфигуратор. В нём данный процесс представлен в виде категорий комплектующих, от процессора до блока питания. Каждая категория содержит расширенный ассортимент по моделям с описанием характеристик для удобства выбора.

Для упрощения подбора комплектующих, в конфигураторе настроен фильтр совместимости по основным компонентам сборки. Например, выбрав определенный процессор, следующие комплектующие фильтруются автоматически по совместимости. Также, вам будет представлен выбор на установку операционной системы. После завершения процесса сборки, вы получаете итоговый результат по трём параметрам: цена, технические данные, визуализированное изображение. После оформления заказа и подтверждения его по телефону, наши специалисты собирают данную комплектацию, проверяют работоспособность.

Преимуществом такого способа покупки системного блока является то, что вы не только выбираете комплектующие, которые хотите, но и имеете возможность выбрать бренд или фирму производителя детали.

Собрав определенную конфигурацию, завершив нажатием кнопок собрать/купить, сборке присваивается определенный порядковый номер, набрав который в строке поиска товара, вы сможете найти данный ПК и отправлять ссылку на него друзьям или знакомым для консультации или рекомендации им к покупке.

Важной особенностью нашего конфигуратора является функция «узнать мнение эксперта» Отправив свой запрос через данную форму, Вы получите развернутый ответ с рекомендацией на электронную почту, указанную вами.

Попробуйте и убедитесь сами - сборка компьютера онлайн - это легко и просто! В случае затруднений, вы всегда можете получить консультации наших специалистов по всем интересующим вас вопросам.

В этом реферате мы постараемся достаточно кратко объяснить некоторые особенности IBM РС-совместимых компьютеров, а также введем некоторые базовые понятия, на которые впоследствии будем не раз ссылаться.

Открытая архитектура (блочно-модульный принцип построения)

Привлекательность IBM РС-совместимых компьютеров заключается в их открытой архитектуре. Это, в частности, означает, что подобные компьютеры имеют модульный принцип построения, то есть их основные узлы и блоки выполнены в виде отдельных модулей. Таким образом, установка новых или замена старых устройств, входящих в состав компьютера, не представляют особых сложностей. Усовершенствование таких компьютеров вполне под силу самим пользователям.

В составе IBM РС-совместимого персонального компьютера можно выделить три основных компонента: системный блок, монитор и клавиатуру. В системном блоке находится вся основная электронная начинка компьютера: блок питания, материнская (системная) плата и приводы накопителей (дисководы) со сменным или несменным носителем. Клавиатура является стандартным устройством ввода информации, позволяющим передавать компьютеру определенные символы или

управляющие сигналы. Монитор (или дисплей) предназначен для отображения на своем экране монохромной или цветной, символьной или графической информации. Все перечисленные выше основные компоненты соединяются друг с другом посредством специальных кабелей с разъемами.

От типа корпуса системного блока зависят, в частности, размеры и размещение используемой системной платы, минимальная мощность блока питания (то есть возможное число, подключаемых устройств) и максимальное количество устанавливаемых приводов накопителей. Корпуса компьютеров бывают напольного (tower) и настольного (desktop) исполнения. Основным отличием этих типов корпусов можно считать различное количество установочных мест для накопителей и соответственно мощность блока питания. Кстати, установочные места (монтажные отсеки) для накопителей могут быть двух типов: с внешним доступом и внутренним доступом. Таким образом, по определению, доступ к накопителям, установленным в монтажные отсеки последнего типа может осуществляться только при открытой крышке корпуса системного блока. Такие установочные места могут использоваться только для накопителей с несменным носителем, например, винчестеров.

Системная плата является основой компьютера и представляет собой плоский лист фольгированного стеклостекстолита, на котором находятся основные электронные элементы: базовый микропроцессор, оперативная память, кварцевый резонатор и другие вспомогательные микросхемы.

В соответствии с принципом открытой архитектуры большая часть

IBM РС-совместимых компьютеров имеет системные платы, которые содержат лишь основные узлы, а элементы связи, например, с приводами накопителей, монитором и другими периферийными устройствами, отсутствуют. В таком

случае эти отсутствующие элементы располагаются на отдельных печатных платах, которые вставляются в специальные разъемы расширения, предусмотренные для этого на системной плате. Эти дополнительные платы называют дочерними, а системную плату - материнской. Функциональные устройства, выполненные на дочерних платах, часто называют контролерами или адаптерами, а сами дочерние платы - платами расширения.

Микропроцессоры и системные шины

В IBM РС-совместимых компьютерах используются только микропроцессоры Intel или их клоны, имеющие подобную архитектуру.

С основными устройствами компьютера микропроцессор связан через так называемую системную шину. По этой шине осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами. Как правило, подключение дополнительных устройств к системной шине производится через разъемы расширения.

Для подключения плат расширения на системной шине компьютеров на базе микропроцессора i8088 (IBM РС и IBM РС/ХТ) используются 62-контактные разъемы. В частности, эта системная шина включает 8 линий данных и 20 адресных линий, которые ограничивают адресное пространство компьютера пределом в

1 Мбайт. В компьютерах PC/AT286 впервые стала применяться новая системная шина ISA (Industry Standart Architecture), по которой можно было передавать параллельно уже 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Эта системная шина отличается от предыдущей наличием дополнительного З6-контактного разъема для соответствующих плат расширения. Компьютеры на базе микропроцессоров i80386/486 стали применять специальные шины для памяти, что позволило максимально использовать ее быстродействие. Тем не менее некоторые устройства, подключаемые через разъемы расширения системной шины, не могут достичь скорости обмена, сравнимой с микропроцессором. В основном это касается работы с контролерами накопителей и видеоадаптерами. Для решения этой проблемы, стали использовать так называемые локальные (local) шины, которые непосредственно связывают микропроцессор с контролерами этих периферийных устройств. В настоящее время известны две стандартные локальные шины: VL-bus (VESA Local-bus) и PCI (Peripheral Component Interconnect). Для подключения устройств к таким шинам на системной плате компьютера имеются специальные разъемы.

Порты, прерывания, прямой доступ к памяти

Все устройства на системной шине микропроцессор рассматривает либо как адресуемую память, либо как порты ввода-вывода. Вообще говоря, под портом понимают некую схему сопряжения, которая обычно включает в себя один или несколько регистров ввода-вывода (особых ячеек памяти).

О совершении некоего события микропроцессор может узнать по сигналу, называемому прерыванием. При этом исполнение текущей последовательности команд приостанавливается (прерывается), а вместо нее начинает выполняться другая последовательность, соответствующая данному прерыванию. Обычно прерывания подразделяются на аппаратные, логические и программные.

Аппаратные прерывания (IRQ) передаются по специальным линиям системной шины и связаны с запросами от внешних устройств (например, нажатие клавиши на клавиатуре). Логические прерывания возникают при работе самого микропроцессора (например, деление на ноль), а программные инициируются выполняемой программой и обычно используются для вызова специальных подпрограмм.

В первых компьютерах IBM PC использовалась микросхема контролера прерываний i8259 (Interrupt Controller), которая имеет восемь входов для сигналов прерываний (IRQ0-IRQ7). Как известно, в одно и то же время микропроцессор может обслуживать только одно событие и в выборе данного события ему помогает контролер прерываний, который устанавливает для каждого из своих входов определенный уровень важности - приоритет. Наивысший приоритет имеет линия запроса прерывания IRQ0, а наименьший - IRQ7, то есть приоритет убывает в порядке возрастания номера линии. В IBM PC/AT восьми линий прерывания стало уже недостаточно и их количество было увеличено до 15. В первых моделях для этого использовалось каскадное включение двух микросхем i8259. Оно осуществлялось путем подсоединения выхода второго контролера ко входу IRQ2 первого.

Важно для понимания здесь следующее. Линии прерывания IRQ8 - IRQ15 (то есть входы второго контролера) имеют приоритет ниже чем IRQ1, но выше IRQ3.

В режиме прямого доступа (DMA, Direct Memory Access) периферийное устройство связано с оперативной памятью непосредственно, а не через внутренние регистры микропроцессора. Наиболее эффективной такая передача данных бывает в ситуациях, когда требуется высокая скорость обмена для большого количества информации. Для инициализации процесса прямого доступа на системной шине используются соответствующие сигналы.

В компьютерах, совместимых с IBM РС и PC/XT, для организации прямого доступа в память используется одна 4-канальная микросхема DMA i8237, канал 0 которой предназначен для регенерации динамической памяти. Каналы 2 и 3 служат для управления высокоскоростной передачей данных между дисководами гибких дисков, винчестером и оперативной памятью соответственно.

IBM PC/AT-совместимые компьютеры имеют 7 каналов прямого доступа к памяти. В первых компьютерах это достигалось каскадным включением двух микросхем i8237, как и в случае контролеров прерываний.

Память компьютера

Все персональные компьютеры используют три вида памяти: оперативную, постоянную и внешнюю (различные накопители). Оперативная память предназначена для хранения переменной информации, так как она допускает изменение своего содержимого в ходе выполнения микропроцессором соответствующих операций. Поскольку в любой момент времени доступ может осуществляться к произвольно выбранной ячейке, то этот вид памяти называют также памятью с произвольной выборкой - RAM (Random Access Memory).

Все программы, в том числе и игровые, выполняются именно в оперативной памяти. Постоянная память обычно содержит такую информацию, которая не должна меняться в течение длительного времени. Постоянная память имеет собственное название - ROM (Read Only Memory), которое указывает на то, что ею обеспечиваются только режимы считывания и хранения.

Логическая организация памяти

Как известно, используемый в IBM РС, PC/XT микропроцессор i8088 через свои 20 адресных шин предоставляет доступ всего к 1-Мбайтному пространству памяти. Первые 640 Кбайт адресуемого пространства в IBM РС-совместимых компьютерах называют обычно стандартной памятью (conventional memory). Оставшиеся 384 Кбайта зарезервированы для системного использования и носят название памяти в верхних адресах (UMB, Upper Memory Blocks, High DOS Memory или UM Area - UMA).Эта область памяти резервируется под размещение системной ROM BIOS (Read Only Memory Basic Input Output System), под видеопамять и ROM-память дополнительных адаптеров.

Дополнительная (expanded) память

Почти на всех персональных компьютерах область памяти UMB редко оказывается заполненной полностью. Пустует, как правило, область расширения системного ROM BIOS или часть видеопамяти и области под дополнительные модули ROM. На этом и базируется спецификация дополнительной памяти EMS (Ехpanded Memory Specification), впервые разработанная фирмами Lotus Development, Intel и Microsoft (поэтому называемая иногда LIM-cпeцификацией). Эта спецификация позволяет использовать оперативную память свыше стандартных 640 Кбайт для прикладных программ. Принцип использования дополнительной памяти основан на переключении блоков (страниц) памяти. В области UMB, между видеобуфером и системным RGM BIOS, выделяется незанятое 64-Кбайтное "окно", которое разбито на страницы. Программные и аппаратные средства позволяют отображать любой сегмент дополнительной памяти в любую из выделенных страниц "окна(TM). Хотя микропроцессор всегда обращается к данным, хранимым в "окне" (адрес ниже 1 Мбайта), адреса этих данных могут быть смещены в дополнительной памяти относительно "окна" на несколько мегабайт (см. рис. 1).

IBM - крупная корпорация, сегодня занимающаяся разработкой и поставкой программного обеспечения и других высокотехнологичных продуктов. За свою более чем 100-летнюю историю она принесла на рынок много новинок. Именно благодаря IBM компьютеры появились практически в каждом доме.

Начало

IBM появилась в то время, когда персональный компьютер было даже сложно себе представить. В 1896 году ее основал Название компания тогда получила TMC и занималась производством счетно-аналитических машин, которые продавались главным образом правительственным организациям.

В начале своей истории компания получила огромный заказ от Министерства статистики, и благодаря этому сразу заняла существенную позицию на рынке. Впрочем, основателю и владельцу по причине проблем со здоровьем все же пришлось продать фирму известному финансовому гению Чарльзу Флинту. Миллионер заплатил за компанию огромную по тем временам сумму в 2,3 млрд. долларов.

Появление IBM

Получив контроль над компанией TMC, Чарльз Флинт незамедлительно начал ее объединение с другими активами, например, ITRC и CSC. В результате был создан прообраз современного «голубого гиганта» - корпорация CTR.

Образованная компания занялась выпуском самого разнообразного оборудования, соответствующего тому времени. Среди него были весы, системы учета рабочего времени и, самое главное, перфокартное оборудование. Именно последнее сыграло большую роль при переходе компании на производство компьютеров.

Впервые бренд IBM появился в 1917 году на канадском рынке. Именно так компания решила показать, что стала международной корпорацией. После достаточного успеха нового названия американское подразделение в 1924 году также сменило название на IBM.

Несколько следующих лет компания активно продолжает совершенствовать собственные технологии, создав новый тип перфокарт с названием IBM Card. Также корпорация вновь получает доступ к большим государственным заказам, что позволяет ей практически не проводить сокращения даже в период Великой депрессии.

IBM и Вторая мировая война

Компания IBM достаточно активно сотрудничала с фашистским режимом в Германии. В 1933 году после на территории Германии корпорация даже запустила собственный завод. Впрочем, компания, как и большинство других американских фирм, заявляет только о продаже машин и не считает это поддержкой режима.

На территории США в годы войны корпорация большей частью занималась снабжением фронта по государственному заказу. Она занялась производством прицелов для метания бомб, винтовок, деталей моторов и других необходимых военным товаров. При этом глава корпорации тогда установил номинальный размер прибыли в 1%, который отправлялся не акционерам, а на нужды фондов помощи.

Начало эры компьютеров

Первый IBM-компьютер был выпущен в 1941-1943 годах и получил название «Марк-I». Весила машина внушительные 4,5 тонны. После проведения тестирования ее официальный запуск состоялся только в 1944 году, после переноса в Гарвардский Университет.

Фактически «Марк-I» был очень сильно усовершенствованным арифмометром, но за счет автоматизации и возможности программирования он является первой электронной вычислительной машиной.

Сотрудничество международной корпорации и главного разработчика оказалось крайне неудачным. IBM-компьютеры продолжила разрабатывать уже без него. В результате в 1952 году компания выпустила первую ламповую ЭВМ.

В конце 1950 были созданы первые IBM-компьютеры на основе транзисторов. Именно благодаря этому усовершенствованию удалось повысить надежность вычислительных машин и создать на их основе первую систему обороны от ракетного удара. В это же время появляется первый серийный компьютер IBM с жестким диском. Правда, накопитель, показанный советскому лидеру в 1958 году, занимал два больших шкафа и был объемом 5 Мбайт. Цены IBM на него установила тоже немаленькие. Первый прообраз жесткого диска стоил около 50 000 долларов США по ценам того времени. Но это было только начало.

Первое появление IBM System

В 1964 году были представлены новые IBM-компьютеры. Они значительно изменились и задали стандарты на много лет вперед. Семейство получило название IBM System/360. Это были первые машины, которые позволяли постепенно наращивать вычислительную мощность за счет смены модели и при этом не менять программного обеспечения. Именно в этих мэйнфреймах впервые стала применяться технология микрокода.

Созданные IBM компьютеры получили очень удачную архитектуру, которая стала фактическим стандартом на многие годы. И сегодня серия System Z, которая является логическим продолжением линейки System/360, применяется очень активно.

Первый ПК

В IBM персональные компьютеры не рассматривали как перспективный рынок. Однако в 1976 году представили первую настольную ЭВМ серии IBM 5100. Она предназначалась больше для инженеров и мало подходила для офисной работы или персонального использования.

Первый массовый персональный компьютер «голубой гигант» представил только в 1981 году. Собственно говоря, в компании не особо надеялись на его успех. Именно поэтому большинство его составляющих приобрели у других компаний. Новая ЭВМ была включена в семейство IBM 5150 и получила наименование PC.

Популярность IBM PC

Новый процессор от компании Intel потребовал и которую очень удачно предложила молодая компания, основанная Биллом Гейтсом.

Самым главным фактором, принесшим популярность PC, стала открытость архитектуры. В корпорации впервые отказались от многолетних принципов и не стали лицензировать применявшиеся комплектующие или BIOS. Это позволило множеству сторонних фирм на основе опубликованных спецификаций быстренько наладить сборку «клонов».

Открытая архитектура обеспечивала и другие преимущества, такие, как возможность ремонта и самостоятельной модернизации ЭВМ. В дальнейшем это дало развитие персональным компьютерам.

Впрочем, сама IBM на рынок домашних компьютеров практически не попала. Первоначальная модель IBM PC была достаточно дорогой. Плюс к этому базовому комплекту требовалось приобрести контроллер гибких дисков и сами накопители. Конкуренты на этом фоне выглядели более перспективно.

Тем не менее, компания попробовала запускать ряд моделей и для домашних пользователей. Одна из них под названием IBM PCjr вошла в число 25 худших компьютерных устройств. Но производство этой модели было быстро прекращено.

В бизнес-сегменте IBM традиционно чувствовали себя превосходно, в том числе и на рынке персональных ЭВМ. Это достигалось высокой узнаваемостью бренда, продуманным маркетингом. Результатом успеха стало появление машин IBM PC/XT и IBM PC/AT.

Первый ноутбук

Несмотря на достаточное плохое изначальное отношение к персональным компьютерам, гигант был вынужден задуматься. Прежде всего, на это повлиял ошеломляющий успех IBM PC. К слову, полугодовой план продаж первого персонального компьютера был выполнен менее чем за 30 дней.

IBM Convertible поступил в продажу в начале 1986 года и, несмотря на достаточно скромные характеристики, производился до 1991 года. Из новшеств это устройство было первым ПК от гигантской корпорации снабжено 3,5” дисководом.

90-е годы

К 90-м годам гигантская корпорация стремительно теряла позиции на рынке персональных компьютеров, но долгое время продолжала выпускать новые модели стационарных и мобильных ЭВМ.

Сначала в 1990 году компания IBM представила на рынок новый компьютер, имеющий совершенно новую архитектуру и несовместимый по аппаратной и программной части с прошлыми поколениями.

Новый компьютер получил современную шину передачи данных, а многие компоненты изменили таким способом, что воспроизвести их небольшими компаниями из Азии было практически невозможно по технологическим и лицензионным причинам. Но архитектура оказалась провальной. Хотя некоторое новшества, примененные в этих ПК, просуществовали достаточно долго, например, разъемы для мыши и клавиатуры PS/2 иногда используется даже в современных машинах.

Одновременно компания производила серию ЭВМ, совместимых с прошлым поколением под названием PS/1, а позднее - Aptiva.

Это были последние персональные компьютеры, производимые «голубым гигантом». К 1996-1997 году производство машин для этого сегмента рынка было свернуто.

2000-е и окончательный уход с рынка ПК

Компания IBM, несмотря на прекращение разработки и производства стационарных ПК, продолжала выпускать и достаточно успешно продавать на рынке ноутбуки. Некоторые пользователи даже продолжали считать компьютеры производства IBM эталонами.

В 2004 году корпорация приняла непростое решение, в результате весь бизнес по производству персональных ЭВМ и ноутбуков был продан китайской компании Lenovo. Сама компания сосредоточилась на гораздо более интересном для гиганта рынке серверов и услуг поддержки. Несколько позднее IBM продала и другие подразделения, связывающие ее с производством ПК, например, занимавшийся выпуском жестких дисков отдел перешел под контроль HITACHI.

Многолетняя история IBM позволила компании накопить огромный опыт в создании компьютерной техники и программного обеспечения. Сегодня, даже несмотря на уход с рынка ПК, компания оказывает достаточно сильное влияние на развитие всей отрасли.

Совместимость компьютеров

Наименование параметра Значение
Тема статьи: Совместимость компьютеров
Рубрика (тематическая категория) Технологии

Классификация компьютеров.

Е поколение (середина 40-х - середина 50-х-годов).

Поколения ЭВМ

Делœение компьютерной техники на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

Развитие ЭВМ прошло несколько этапов, связанных с поколениями ЭВМ. Каждое поколение ЭВМ отличается элементной базой, архитектурой, областью применения, интерфейсами, программными средствами решения задач.

Элементная база - электронные лампы, резисторы, конденсаторы; архитектура - простейшая; применение - научные расчёты; способы общения - непосредственное ручное управление устройствами ЭВМ, программирование на языке машины.

1945-1950 гᴦ. Выдающийся ученый Дж. фон Нейман (США) разработал концепции и конструкцию ЭВМ EDVAC. Основные положения концепции фон Неймана используются до настоящего времени.

1946 ᴦ. Американские инженеры Д.Эккерт и Д.Моучли в Пен­сильванском университете построили первую действу­ющую ЭВМ ENtAC.

1947-1950 гᴦ. Группа инженеров под руководством акад. С. А.Лебедева разрабатывает и вводит в эксплуатацию первую в СССР малую электронную счетную машину (МЭСМ).

1948 ᴦ. Группа американских физиков сконструировала тран­зистор - основной элемент ЭВМ 2-го поколения.

1949 ᴦ. В Англии под руководством М.Уилкса создана первая ЭВМ с хранимой программой EDSAK.

Начало 50-х годов. В нескольких странах начинается серий­ный выпуск ЭВМ 1-го поколения, основной элемент­ной базой которых были электронные лампы. ОЗУ строились на ртутных линиях задержки, ЭЛТ и позднее на ферритовых кольцах.

В СССР после МЭСМ выпускаются: в Москве большая электронная счетная машина БЭСМ-1, БЭСМ-2 (С.А.Лебедев) а самая быстродействующая в Европе ЭВМ того времени М-10 (Л.Лебедев и Ю.А.Базилевский), в Пензе -ʼʼУралʼʼ (В.И.Рамеев), в Минске-ʼʼМинск-1, ʼʼМинск-14ʼʼ (В.В.Пржисловський), в Киеве - ʼʼКиевʼʼ (В.М.Глушков), в Ереване – ʼʼРозданʼʼ (Ф.Т.Саркисян).

Внедрение первых ЭВМ не могло проходить без опережающего развития численных методов решения задач и основ программирования. Эту работу в СССР возглавили академики А.А.Марков, А.Н.Колмогоров, И.В.Курчатов, М.А.Лаврентьева, А.А. Дородницын, М.В.Келдыш.

1942-1953 гᴦ. Советские ученые А.А.Ляпунов и М.Р.Шура-Пура предложили операторный метод программиро­вания.

1943-1955 гᴦ. Группа математиков под руководством Д.Бейкуса (США) разработала алгоритмический язык Фор­тран.

2-е поколение (середина 50-х-середина 60-х годов): полупроводниковые транзисторы и диоды, резисторы, конденсаторы; более сложная архитектура; решение научных, технических и народнохозяйственных задач; применение операционных систем; создание вычислительных комплексов; коллективного пользования; развитие алгоритмических языков.

1954-1957 гᴦ. В США создастся первая ЭВМ на транзистор NCR 304.

Конец 50-х годов. В Массачусетсском технологическом институте разработан алгоритмический язык ЛИСП, работ по проблемам искусственного интеллекта прикладном плане - для экспертных систем).

Начало 60-х годов. Серийное производство в СССР ЭВМ 2-г поколения на транзисторах: М-220, БЭСМ-3, БЭСГ 4, ʼʼУрал-11ʼʼ, ʼʼУрал-14ʼʼ, ʼʼУрал-16ʼʼ, ʼʼМинск-22ʼʼ, ʼʼМинск-32ʼʼ, ʼʼРаздан-2ʼʼ, ʼʼРаздан-3ʼʼ, ʼʼДнепр-1ʼʼ, ʼʼДнепр-3ʼʼ и др.

1961 ᴦ. Фирма Intel (США) выпустила в продажу первые интегральные схемы (ИС).

1966 ᴦ. В СССР введена в эксплуатацию самая быстродействующая в мире (для того времени) большая ЭВГ БЭСМ-6 (С.А.Лсбсдсв). Большое быстродействие БЭСМ-6 обусловили впервые примененные мультипрограммный режим работы и конвейерная процедура обработки данных, которые используются практически во всœех современных ЭВМ.

3-е поколение (середина 60-х - середина 70-х годов) интегральные микросхемы; архитектура связана с многопроцессорными, многомашинными и многоканальными комплексами; решение широкого круга задач автоматизации управления, конструирования и планирования; эффективные операционные системы, прикладные программы и языки программирования; появление первых компьютерных сетей.

1965 ᴦ. В США начат выпуск ЭВМ 3-го поколения серии 360 на интегральных схемах.

1966 ᴦ. Для обработки коммерческой информации разработан алгоритмический язык КОБОЛ (США).

1986 ᴦ. Фирма DEC (США) разработала мини-ЭВМ семейства PDP с широким диапазоном применения: научные ис­следования, управление технологическими процесса­ми, обработка экспериментальных данных в реальном масштабе времени, автоматизация инженерных, эко­номических и управленческих работ и др.

Начало 70-х годов. В СССР совместно со специалистами НРБ, ВНР, ЧССР, ГДР разработаны и производят в необ­ходимом количестве ЭВМ 3-го поколения единой си­стемы (ЕС ЭВМ). Эти ЭВМ, совместимые с IBM 360, послужили основой для организации вычислительных центров коллективного пользования и автоматизиро­ванных систем управления в крупных организациях и на предприятиях.

1971 ᴦ. Фирма Intel (США) выпустила микропроцессор, изго­товленный на базе технологии ИС.

1971 ᴦ. Управление перспективных исследований Министер­ства обороны США объявило о вводе в действие пер­вой части глобальной информационно-вычислитель­ной сети ARPANET. В 1982 ᴦ. ARPANET была объединœена с другими сетями и это сообщество сетей получило название Internet.

70-е - начало 80-х годов. В США, Англии и СССР вступают в действие суперЭВМ: ILLIAC-IV, STATAN-100, Сгау-1 (2, 3, MX), Cyber-205, DAP, Phenix, Connection machine, ʼʼЭльбрусʼʼ.

1973-1976 гᴦ. Специалисты СССР, НРБ, ВНР, ПНР, ЧССР, ГДР, Монголии и Кубы разработали серию мини-ЭВМ, совместимых с PDP (США).

4-е поколение (середина 70-х годов - 2000 ᴦ.): большие интегрированные схемы; сложная архитектура; решение раз­ных задач во всœех областях деятельности человека; многозадачные и многопользовательские операционные системы; ʼʼличного типа манипуляторы; устройства речевого ввода и вывода; средства мультимедиа; эффективные прикладные программы и языки, поддерживающие искусственный интеллект; развитие инфраструктуры компьютерных сетей.

1977 ᴦ. В США молодые предприниматели С.Джобсон и С.Возняк организовали фирму по изготовлению недорогих ПК, предназначенных для широкого круг пользователœей. Эти ПК, названные APPLE (ʼʼЯблокоʼʼ), послужили основой для широкого распространения ПК во всœем мире.

1979-1980 гᴦ. Специалисты Японии разработали и начали пуск первых электронных словарей-переводчиков.

1981 ᴦ. Группа ведущих специалистов нескольких электронных фирм Японии объявила о создании в 90-е годы ЭВМ 5-го поколения (ʼʼЯпонский вызов мируʼʼ).

1982 ᴦ. Фирма IBM (США), занимавшая ведущее положение выпуске больших ЭВМ, приступила к производству ПК IBM PC. Многие фирмы мира начали выпускав IBM - совместные ПК.

Середина 80-х годов. Группы ученых под руководством К.Саган (США) и В.В. Александрова (СССР) разработали математические модели последствий ʼʼядерной зимыʼʼ и ʼʼядерной ночиʼʼ. Эти выводы сыграли огромную роль в формировании политики стран-держателœей атомного оружия.

1988 ᴦ. В СССР начат массовый выпуск школьных ПК (ʼʼКорветʼʼ, УКНЦ, ʼʼНемигаʼʼ и др.) и бытовых ПК (БК 0010, ʼʼПартнерʼʼ, ʼʼВекторʼʼ, ʼʼБайтʼʼ и др.).

Сегодня большое количество электронных фирм мира производят разнообразные классы ЭВМ от бытовых до суперЭВМ в стационарном и портативном исполнении. Парк ЭВМ сейчас в мире примерно составляет: ПЭВМ 2,5 ‣‣‣ 10 8 шт.; мини-ЭВМ-10 6 шт.; манфреймы - 2 * 10 4 шт.суперЭВМ - 100 шт.

5-е поколение (начало XXI века). Сейчас трудно предсказать, как будут выглядеть ЭВМ 6-го поколения, однако можно указать общие тенденции развития компьютерных технологий и их влияние на общество.

Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста͵ с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах шестого поколения произойдёт качественный переход от обработки данных к обработке знаний .

Создание семейства ЭВМ с принципиально новыми возможностями, которые обеспечат:

эффективное использование всœех имеющихся ресурсов страны: материальных, энергетических, людских информационных;

улучшение дел в областях с низкой производительностью труда;

включение страны в международное сотрудничество;

усовершенствование использования интеллектуального потенциала общества;

повышение конкурентоспособности товаров на меж­дународном рынке;

увеличение производительности жизни населœения;

способствование высокому уровню образования.

В элементной базе ЭВМ предполагается:

достижение предельной плотности упаковки элемен­тов в СБИС на кремниевой основе;

производство СБИС на базе арсенида галлия;

использование криогенной технологии на базе эффекта Джозефсона.

Архитектуры ЭВМ совершенствуются по следующим направлениям:

· создание системы ЭВМ различной мощности, сбалан­сированных по архитектуре, что позволит пользова­телю быстро, просто и эффективно использовать ог­ромный потенциал такой системы;

· выработка однопроцессорных ПЭВМ с командным управлением, на новой быстродействующей элементной базе; эти направление развивают те фирмы, которые хотят сохранить программную совместимость но­вых ПК с существующими;

· выработка ЭВМ на нескольких быстрых процессо­рах с командным управлением, часть которых явля­ется универсальными, а другая часть - конвейерны­ми или параллельными с небольшим числом процессорных элементов;

· выработка высокопроизводительных многопроцес­сорных ЭВМ с конвейерной, параллельной или мат­ричной обработкой информации.

Кроме известных способов обработки информации, ЭВМ ориентированы на распознавание образов и обработку структурированных знаний и принятие интеллектуальных решений.

Совершенствование интеллектуальных интерфейсов:

технических и программных средств ввода / вывода различных видов информации;

общение на проблемно-ориентированном естественном разговорном языке;

использование текстовых документов, как печатный так и рукописных, и изображений;

всœемерное развитие известных и новых алгоритмических языков программирования;

применение языков искусственного интеллекта: Лисп Пролог, PS, FRL, VALID, OCCAM и др.

Реализация программ создания ЭВМ 5-го поколения позволит в ряде стран построить так называемое информационное общество.

Существуют различные классификации компьютерной техники:

по этапам развития (по поколениям);

по архитектуре;

по производительности;

по условиям эксплуатации;

по количеству процессоров;

по потребительским свойствам и т.д.

Четких границ между классами компьютеров не существует . По мере совершенствования структур и технологии производства, появляются новые классы компьютеров, границы существующих классов существенно изменяются.

По условиям эксплуатации компьютеры делятся на два типа:

офисные (универсальные);

специальные.

Офисные предназначены для решения широкого класса задач при нормальных условиях эксплуатации.

Cпециальные компьютеры служат для решения более узкого класса задач или даже одной задачи, требующей многократного решения, и функционируют в особых условиях эксплуатации.

Машинные ресурсы специальных компьютеров часто ограничены. При этом их узкая ориентация позволяет реализовать заданный класс задач наиболее эффективно.

Специальные компьютеры управляют технологическими установками, работают в операционных или машинах скорой помощи, на ракетах, самолётах и вертолётах, вблизи высоковольтных линий передач или в зоне действия радаров, радиопередатчиков, в неотапливаемых помещениях, под водой на глубинœе, в условиях пыли, грязи, вибраций, взрывоопасных газов и т.п. Существует много моделœей таких компьютеров. Познакомимся с одной из них.

Компьютер Ergotouch

Компьютер Ergotouch (Эрготач) исполнен в литом алюминиевом полностью герметичном корпусе, который легко открывается для обслуживания.

Cтенки компьютера поглощают практически всœе электромагнитные излучения как изнутри, так и снаружи. Машина оборудована экраном, чувствительным к прикосновениям.

Компьютер можно, не выключая, мыть из шланга, дезинфицировать, дезактивировать, обезжиривать.

Высочайшая надежность позволяет использовать его как средство управления и контроля технологическими процессами в реальном времени. Компьютер легко входит в локальную сеть предприятия.

Важное направление в создании промышленных компьютеров - выработка "операторского интерфейса" - пультов управления, дисплеев, клавиатур и указательных устройств во всœевозможных исполнениях. От этих изделий напрямую зависит комфортность и результативность труда операторов.

По производительности и характеру использования компьютеры можно условно подразделить на:

микрокомпьютеры, в т.ч. - персональные компьютеры;

миникомпьютеры;

мэйнфреймы (универсальные компьютеры);

суперкомпьютеры.

Микрокомпьютеры - это компьютеры, в которых центральный процессор выполнен в виде микропроцессора.

Продвинутые модели микрокомпьютеров имеют несколько микропроцессоров. Производительность компьютера определяется не только характеристиками применяемого микропроцессора, но и ёмкостью оперативной памяти, типами периферийных устройств, качеством конструктивных решений и др.

Микрокомпьютеры представляют из себяинструменты для решения разнообразных сложных задач. Их микропроцессоры с каждым годом увеличивают мощность, а периферийные устройства - эффективность. Быстродействие - порядка 1 - 10 миллионов опеpаций в сек.

Разновидность микрокомпьютера - микроконтроллер.
Размещено на реф.рф
Это основанное на микропроцессоре специализированное устройство, встраиваемое в систему управления или технологическую линию.

Современные средства компьютерной техники бывают классифицированы следующим образом:

· Персональные компьютеры;

· Корпоративные компьютеры;

· Суперкомпьютеры.

Персональные компьютеры (ПК) - это микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком.

В класс персональных компьютеров входят различные машины - от дешёвых домашних и игровых с небольшой оперативной памятью, с памятью программы на кассетной ленте и обычным телœевизором в качестве дисплея, до сверхсложных машин с мощным процессором, винчестерским накопителœем ёмкостью в десятки Гигабайт, с цветными графическими устройствами высокого разрешения, средствами мультимедиа и другими дополнительными устройствами.

Персональные компьютеры представляют из себявычислительные системы, всœе ресурсы которых полностью направлены на обеспечение деятельности одного работника.

Наиболее известными являются компьютеры семейства IBM PC и Macintosh. Это два различных направления развития ПК, несовместимых между собой по аппаратному и программному обеспечению. Так уж сложилось, что компьютеры семейства Macintosh очень удобны в работе, располагают широкими графическими возможностями и получили большое распространение в среде профессиональных художников, дизайнеров, в издательском делœе и в сфере образования.

В семействе IBM – совместимых ПК также можно выделить несколько разновидностей компьютеров, которые значительно отличаются друг от друга по своим характеристикам и внешнему виду, и, тем не менее, всœе они – персональные компьютеры. Это, прежде всœего, настольные (desktop) и переносные (laptop) ПК, которые, несмотря на существенные внешние отличия, располагают приблизительно одинаковыми характеристиками и возможностями.

Переносные ПК – дорогие изделия, зато они компактны и транспортабельны. Существенно отличаются от настольных и переносных – карманные компьютеры – так называемые органайзеры, или ʼʼпереносные секретариʼʼ. Эти ПК-блокноты не имеют ни периферийных устройств, ни клавиатуры, выбор команд осуществляется прямо на миниатюрном экране с помощью указки – стило.

Портативные компьютеры обычно нужны руководителям предприятий, менеджерам, учёным, журналистам, которым приходится работать вне офиса - дома, на презентациях или во время командировок.

Основные разновидности портативных компьютеров:

Laptop (наколенник, от lap - колено и top - поверх). По размерам близок к обычному портфелю. По основным характеристикам (быстродействие, память) примерно соответствует настольным ПК. Сейчас компьютеры этого типа уступают место ещё меньшим.

Notebook (блокнот, записная книжка). По размерам он ближе к книге крупного формата. Имеет вес около 3 кᴦ. Помещается в портфель-дипломат. Важно заметить, что для связи с офисом его обычно комплектуют модемом . Ноутбуки зачастую снабжают приводами CD-ROM .

Многие современные ноутбуки включают взаимозаменяемые блоки со стандартными разъёмами . Такие модули предназначены для очень разных функций. В одно и то же гнездо можно по мере нужнобности вставлять привод компакт-дисков, накопитель на магнитных дисках, запасную батарею или съёмный винчестер.
Размещено на реф.рф
Ноутбук устойчив к сбоям в энергопитании . Даже если он получает энергию от обычной электросœети, в случае какого-либо сбоя он мгновенно переходит на питание от аккумуляторов.

Персональный цифровой помощник

Palmtop (наладонник) - самые маленькие современные персональные компьютеры. Умещаются на ладони. Магнитные диски в них заменяет энергонезависимая электронная память. Нет и накопителœей на дисках - обмен информацией с обычными компьютерами идет линиям связи. В случае если Palmtop дополнить набором деловых программ, записанных в его постоянную память, получится персональный цифровой помощник (Personal Digital Assistant ).

Корпоративные компьютеры (иногда называемые мини-ЭВМ или main fram) представляют из себявычислительные системы, обеспечивающие совместную деятельность многих работников в рамках одной организации, одного проекта͵ одной сферы информационной деятельности при использовании одних и тех же информационно-вычислительных ресурсов. Это многопользовательские системы, имеющие центральный блок с большой вычислительной мощностью и значительными информационными ресурсами, к которому присоединяется большое число рабочих мест с минимальной оснащенностью (видеотерминал, клавиатура, устройство позиционирования типа ʼʼмышиʼʼ и, возможно, устройство печати). В принципе в качестве рабочих мест, соединœенных с центральным блоком корпоративного компьютера, бывают использованы и персональные компьютеры. Область применения корпоративных компьютеров – реализация информационных технологий обеспечения управленческой деятельности в крупных финансовых и производственных организациях, правительственные учреждения, создание информационных систем, обслуживающих большое число пользователœей в рамках одной функции (биржевые и банковские системы, бронирование и продажа билетов и т.п.).

Особенности корпоративных компьютеров:

Исключительная надежность;

Высокое быстродействие;

Большая пропускная способность ввода-вывода.

Стоимость таких компьютеров – миллионы долларов. Спрос – высокий.

Преимущества – централизованное хранение и обработка данных обходятся дешевле, чем обслуживание распределœенных систем обработки данных, состоящих из сотен и тысяч ПК.

Суперкомпьютеры представляют из себявычислительные системы с предельными характеристиками вычислительной мощности и информационных ресурсов. Οʜᴎ используются в военной и космической областях деятельности, в фундаментальных научных исследованиях, глобальном прогнозировании погоды, военной промышленности, геологии и т.д. К примеру, прогнозирование погоды или моделирование ядерного взрыва.

Архитектура суперкомпьютеров основана на идеях параллелизма и конвейеризации вычислений .

В этих машинах параллельно, то есть одновременно, выполняется множество похожих операций (это принято называть мультипроцессорной обработкой ). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, сверхвысокое быстродействие обеспечивается не для всœех задач , а только для задач, поддающихся распараллеливанию.

Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. В случае если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном - выдаёт сразу векторые команды.

Векторная аппаратура очень дорога, в частности, потому, что требуется много сверхбыстродействующей памяти под векторные регистры.

Наиболее распространённые суперкомпьютеры - массово-параллельные компьютерные системы. Οʜᴎ имеют десятки тысяч процессоров, взаимодействующих через сложную, иерархически организованую систему памяти.

В качестве примера рассмотрим характеристики многоцелœевого массово-параллельного суперкомпьютера среднего класса Intel Pentium Pro 200 . Этот компьютер содержит 9200 процессоров Pentium Pro на 200 Мгц, в сумме (теоретически) обеспечивающих производительность 1,34 Терафлоп (1 Терафлоп равен 10 12 операций с плавающей точкой в секунду), имеет 537 Гбайт памяти и диски ёмкостью 2,25 Терабайт. Система весит 44 тонны (кондиционеры для неё - целых 300 тонн) и потребляет мощность 850 кВт.

Супер-компьютеры используются для решения сложных и больших научных задач (метеорология, гидродинамика и т. п.), в управлении, разведке, в качестве централизованных хранилищ информации и т.д.

Элементная база - микросхемы сверхвысокой степени интеграции.

Стоимость – десятки миллионов долларов.

Назначение – решение тех задач, для которых производительности ПК недостаточно;

Обеспечение централизованного хранения и обработки данных.

Особенности: возможность подключения десятков и сотен терминалов или ПК для работы пользователœей; наличие специальных аппаратных средств для трехмерного моделирования и анимации, в связи с этим именно на них создается большое количество кинофильмов.

Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целœесообразно применять в больших системах при наличии не менее 200 - 300 рабочих мест.

Централизованная обработка данных на мэйнфрейме обходится примерно в 5 - 6 раз дешевле, чем распределённая обработка при клиент-серверном подходе.

Известный мэйнфрейм S/390 фирмы IBM обычно оснащается не менее чем тремя процессорами. Максимальный объём оперативного хранения достигает 342 Терабайт.

Производительность его процессоров, пропускная способность каналов, объём оперативного хранения позволяют наращивать число рабочих мест в диапазоне от 20 до 200000 с помощью простого добавления процессорных плат, модулей оперативной памяти и дисковых накопителœей.

Десятки мэйнфреймов могут работать совместно под управлением одной операционной системы над выполнением единой задачи.

Данная классификация достаточно условна, поскольку интенсивное развитие технологий производства электронных компонентов, значительный прогресс в совершенствовании компьютеров и их наиболее важных составляющих элементов приводят к размыванию границ между указанными классами средств вычислительной техники.

Вместе с тем, приведенная классификация учитывает только автономное использование вычислительной техники. Сегодня преобладает тенденция их объединœения в вычислительные сети, что позволяет интегрировать информационно-вычислительные ресурсы для наиболее эффективной реализации информационных технологий.

ІВМ РС – совместимые компьютеры - ϶ᴛᴏ около 90% всœех современных компьютеров.

Совместимость – это:

Программная совместимость – всœе программы для IBM PC будут работать на всœех IBM PC – совместимых компьютерах.

Аппаратная совместимость – большинство устройств (кроме пяти или десятилетней давности) для компьютеров ІВМ РС и более новых версий ІВМ РС ХТ, ІВМ РС АТ и других пригодны для ІВМ РС – совместимых компьютеров.

Преимущества ІВМ РС – совместимых компьютеров:

1) полная совместимость вызвала появление сотен тысяч программ для всœех сфер человеческой деятельности;

2) открытость рынка ІВМ РС – совместимых компьютеров вызвала острую конкуренцию среди производителœей компьютеров и их комплектующих, что обеспечило высокую надежность, относительно низкую цену и максимально быстрые внедрения технических новинок;

3) модульная конструкция и интеграция компонентов ІВМ РС – совместимых компьютеров обеспечивающих компактность, высокую надежность, простоту ремонта͵ возможность легкой модернизации и увеличения мощности компьютера (более мощный процессор или более емкий НЖМД).

Широкие возможности ІВМ РС – совместимых компьютеров позволяет использовать их в различных отраслях и для решения разнообразных задач.

Вопросы для самоконтроля

1. По каким признакам можно разделять компьютеры на классы и виды?

7. Как эволюционировала элементная база компьютеров от поколения к поколению?

8. Когда микрокомпьютеры стали доступны для широкого домашнего применения?

9. Можете ли связать понятия "яблоко", "гараж" и "компьютер"?

10. На базе каких технических элементов создавались компьютеры первого поколения?

11. Какую основную проблему перед разработчиками и пользователями выдвинул опыт эксплуатации компьютеров первого поколения?

12. Какая элементная база характерна для второго поколения компьютеров?

13. Какую функцию выполняет операционная система в процессе работы компьютера?

14. На какой элементной базе конструируются машины третьего поколения?

15. Для каких поколений компьютеров характерно широкое использование интегральных схем?

16. Какое быстродействие характерно для машин четвёртого поколения?

17. Что подразумевают под "интеллектуальностью" компьютеров?

18. Какую задачу должен решать "интеллектуальный интерфейс" в машинах пятого поколения?

19. Какими особенностями должны обладать промышленные компьютеры?

20. Что такое операторский компьютерный интерфейс?

21. По каким основным признакам можно отличить мэйнфреймы от других современных компьютеров?

22. На какое количество пользователœей рассчитаны мэйнфреймы?

23. Какие идеи лежат в базе архитектуры суперкомпьютеров?

24. На каких типах задач максимально реализуются возможности суперкомпьютеров?

Тема 5. ПЭВМ КАК ОСНОВА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

1. Архитектура ПК

2. Структура ПК

3. Функциональные характеристики ПК

Совместимость компьютеров - понятие и виды. Классификация и особенности категории "Совместимость компьютеров" 2017, 2018.

Первым делом требуется точно определиться с задачами, для которых будет использоваться ваш будущий системный блок. Если запланирована покупка игрового оборудования, то особое внимание нужно уделить видеокарте, а для графической рабочей станции основополагающую роль играет мощность процессора и объём оперативной памяти. Наименее требовательными в плане производительности являются офисные системники. Вам даже не потребуется добавлять внешнюю видеокарту, ведь вполне достаточно будет и встроенной. Сперва следует выбрать процессор. Этот элемент влияет на общую производительность всей системы и чем больше будет ядер (и чем выше их частота работы), тем быстрее будут выполняться операции.

Далее конфигуратор ПК поможет подобрать материнскую плату. Она должна быть совместима с CPU и поддерживать оперативную память необходимой частоты. Обратите своё внимание на наличие всех необходимых слотов и разъёмов, а также на размер самой материнской платы (АТХ, micro ATX, mini ATX и пр.). Обычно на любой из них уже присутствует встроенная сетевая и звуковая карта. Конструктор интернет-магазина сайт автоматически подберет подходящие варианты, после того как вы выберете процессор, а не подходящие исключит. Игровой компьютер обязательно укомплектовывается внешней видеокартой. Если вы хотите регулярно играть в современные игры и надолго забыть о модернизации вашей системы, то экономить не стоит. Это касается и объёма оперативной памяти, на стоимость ПК она особо не повлияет, но на производительности скажется значительно. От объёма жесткого диска зависит количество информации, которую вы можете одновременно хранить на компьютере. Но для увеличения быстродействия системы рекомендуют дополнительно устанавливать SSD-накопитель. На нём будет находиться ОС, программы и приложения.

Для удобной работы с внешними носителями данных системный блок, по желанию, укомплектовывают оптическим приводом и карт-ридером. Одним из важных элементов системника выступает блок питания. Его мощность должна подбираться после просчёта суммарного объёма потребления электроэнергии комплектующими. Кроме того, оставьте запас в 100-200 Вт для надёжной работы при повышенных нагрузках на процессор и видеокарту. Конструктор не даст вам ошибиться с выбором блока питания, так как учтет выбранные вами комплектующие и предоставит только подходящие корпуса с блоками питания.

Конфигурация мощного игрового компьютера предусматривает наличие дополнительной системы охлаждения, которая подбирается автоматически, в зависимости от выбранного процессора. Осталось собрать всё в корпус. Он может быть совсем простым и прямолинейным, если системный блок вы планируете установить под столом, где его никто не будет видеть, либо же иметь неоновую подсветку и окно на боковой стороне, позволяющее наблюдать за работой системы (геймерские варианты). Это дело вкуса, но учтите, что корпус для игрового ПК должен быть вместительным и иметь хорошую продуваемость, чтобы комплектующие не перегревались на пиковых нагрузках.

Возникли трудности?

Для удобства клиентов предусмотрена возможность отправить на печать получившуюся конфигурацию. А если возникли трудности, то стоит воспользоваться помощью нашего инженера, который подскажет какие комплектующие правильнее использовать для получения оптимальных технических характеристик.
Решив собрать компьютер у нас, вы получаете лучшие цены и сервис. Гарантируем быструю, но бережную доставку вашего системного блока.

Похожие статьи