Проектирование радиовещательного передатчика с амплитудной модуляцией. Расчет, конструирование и проектирование радиопередающего устройства

01.05.2019

Техника радиопередающих устройств развивается непрерывно и интенсивно. Это обусловлено определяющей ролью передатчиков внедряются новые и новые идеи благодаря которым снижается энергопотребление устройств, повышается качество их работы, надежность, с использованием чип-технологий уменьшаются размеры и стоимость радиосистем передачи и извлечения информации, радиоуправления и т.д.

Практически все население Земли обслуживается радиопередатчиками звукового и телевизионного вещания. Это передатчики с мощностью от милливатт до сотен киловатт и единиц мегаватт. В передатчиках изображения используют амплитудную, а в передатчиках звукового сопровождения - частотную и фазовую модуляцию.

По существу радиосвязь представляет собой распространяющееся в пространстве электромагнитное колебание, несущее в себе информацию. Если информация заключается в амплитуде электромагнитного колебания - то говорят об амплитудной модуляции (или АМ), если же в частоте или фазе - то о частотной (ЧМ) или фазовой (ФМ) модуляции.

В наше время широко используются радиостанции, т.е. устройства, сочетающие в себе и радиоприёмник и радиопередатчик и способные работать как на приём, так и на передачу в широком диапазоне частот.

Радиосвязь имеет огромное значение для современного человека и используется им почти во всех сферах его деятельности, поэтому, очень нужны специалисты по электронике и радиосвязи.

В данном случае необходимо выбрать структурную схему и спроектировать оконечный и предоконечный каскад передатчика низовой радиосвязи (НРС) с частотной модуляцией.

Передатчики НРС применяются в диапазонах КВ и УКВ для передачи сообщений на небольшие расстояния. Передатчики такого типа проектируются для работы на одной фиксированной частоте или в диапазоне частот.

В основе проектирования (интегрализации) радиопередающих устройств (РПУ) на ИС лежат общие принципы проектирования микроэлектронной аппаратуры, которые приобретают некоторые особенности, связанные со спецификой передающей аппаратуры.

Отличительными чертами РПУ являются:

  • - аналоговый характер сигнала, его большой динамический диапазон (доли микровольт - единицы вольт);
  • - широкий частотный диапазон (от постоянного тока - на выходе детектора, до сотен мегагерц или десятков гигагерц - на выходе);
  • - большое число нерегулярных соединений;
  • - функциональное разнообразие узлов (блоков) при их относительно небольшом общем числе.

К функциональным блокам (каскадам) предъявляются разнообразные требования, часто зависящие от типа сигналов. В некоторых узлах должна быть обеспечена прецизионность изготовления. Часто оказывается необходимым изменять параметры элементов в процессе регулировки аппаратуры, что нежелательно при микроэлектронном исполнении.

На цифровых ИС можно реализовать практически любой алгоритм обработки сигнала, осуществляемый в приемно-усилительных устройствах, включая элементы оптимального радиоприема.

Связные РПУ с частотной модуляцией проектируются для работы на одной фиксированной частоте или в диапазоне частот. В первом случае рабочая частота стабилизируется кварцевым резонатором, а для генерации ЧМ колебаний могут быть использованы как прямой метод управления частотой, так и косвенный. Структурная схема передатчика с использованием прямого метода ЧМ изображена на рис.1.

Рис.1.

Модулирующее напряжение U подается на варикап, с помощью которого модулируется по частоте кварцевый автогенератор (КГ).

Кварцевый генератор работает на частотах 10-15 МГц, затем его частота умножается в n раз до рабочего значения, сигнал подается на усилитель мощности (УМ) и через цепь связи ЦС в антенну.

Косвенный метод ЧМ основан на преобразовании фазовой модуляции (ФМ) в частотную при помощи введения в схему интегрирующего звена, т. е. фильтра низких частот (ФНЧ). Структурная схема передатчика с использованием косвенного метода получения ЧМ изображена на рис.2.


Рис.2.

В качестве возбудителя диапазонного передатчика с ЧМ используется синтезатор сетки дискретных частот, ведомый генератор которого управляется двумя варикапами (рис.3).


Рис.3.

На варикап VD1 подается модулирующее напряжение U, на варикап VD2 - управляющее напряжение системы фазовой автоподстройки частоты (ФАПЧ). Разделение функций управления объясняется тем, что девиация частоты под влиянием модулирующего сигнала относительно невелика (3-5 кГц) в сравнении с диапазоном перестройки ведомого генератора (ГУН) управляющим сигналом с выхода системы ФАПЧ. Поэтому варикап VD1 связан с колебательным контуром ГУНа значительно слабее, чем VD2. Шаг сетки частот на выходе передатчика в зависимости от рабочего диапазона может быть 5; 10; 12,5; 25 кГц.

Для повышения устойчивости необходимо, чтобы мощный оконечный усилитель как можно меньше влиял на работу ГУНа, поэтому производят их развязку по частоте введением в структуру передатчика умножителя частоты. В таком случае шаг сетки синтезатора уменьшается в n раз, где n - коэффициент умножения частоты умножителя.


1 . Техническое задание

Спроектировать радиовещательный передатчик с АМ (ПРВАМ) со следующими параметрами:

· Мощность в антенне (нагрузке) P ~ =100 кВт;

· Волновое сопротивление фидера с Ф =150 Ом;

· КПД фидера з ф = 0.80;

· Коэффициент бегущей волны КБВ = 0.8;

· Максимальный индекс модуляции m = 1;

· Диапазон рабочих частот f min - f max , 0.1 - 0.3МГц;

· Диапазон частот модуляции ДF = 50 10000 Гц;

· несущая частота f 0 =200 кГц.

Анализ технического задания:

Радиовещательные передатчики (ПРВ) с АМ применяемые в диапазонах длинных, средних и коротких волн по своим параметрам должны соответствовать ГОСТ 1392468. В ламповых вариантах передатчиков для получения АМ сигнала заданной мощности наиболее распространены анодная, анодно-экранная или комбинированная (по нескольким электродам) модуляция в оконечном каскаде, реже применяется усиление модулированных колебаний (УМК).

В рамках данной работы проведены следующие расчеты:

· оконечного каскада в пиковой, минимальной и телефонной точках, а также при 100% -й глубине модуляции;

· модулирующего устройства и электрических параметров его элементов; трансформатора, дросселей, блокировочных конденсаторов;

· выходной колебательной системы;

2. Выбор способа постр оения проектируемого устройства

Для реализации данного устройства был выбран вариант реализации с анодной модуляцией вследствие ее высокой энергоэффективности, хорошей линейности и широкого применения в радиовещательных передатчиках , .Структурная схема проектируемого устройства представлена на рисунке 1.

Рисунок 2.1. Структурная схема проектируемого радиовещательного передатчика с АМ.

Ориентировочный расчет радиопередатчика с АМ по структурной схеме

Согласно техническому заданию, передатчик должен обладать следующими параметрами: P ~ = 100 кВт;

индекс модуляции m = 1;

диапазон рабочих частот f min f max = 0.1 0.3 МГц.

Исходя из заданных выше параметров произведем ориентировочный расчет элементов радиопередатчика.

Пиковая мощность в антенне при этом составит:

Мощности P 1 T и P 1 max , отдаваемые приборами ОК определяются формулами:

где ориентировочный КПД выходной колебательной системы. выбранный из таблицы, приведенной в и , КПД фидера.

Тогда P 1 T = 136 кВт, P 1 max = 544 кВт.

В связи с тем, что в ОК реализована анодная модуляция то номинальная мощность ЭП выбирается по правилу P 1ном?2P 1 T = 272 кВт (номинальная мощность генераторных ламп).

Т.к. при разработке ОК использовалась двухтактная схема, то P 1ном лампы = .

Выбор типа лампы осуществляется по таким параметрам как P 1ном ламы и максимальной рабочей частоте f max .

По справочным таблицам, представленным в и была выбрана лампа ГУ 66 Б, имеющая следующие параметры : E a ном = 10 кВ; S = 0.16 А/В, P ном справ = 150 кВт.

Описание лампы ГУ 66 Б приведено в приложении 1.

Принципиальная схема проектируемого радиовещательного передатчика представлена на рисунке 2.2.

Рисунок 2.2 - Принципиальная схема проектируемого передатчика с АМ.

3 . Расчет оконечного каскада (ОК)

В данном пункте производится расчет ОК в следующих режимах:

· в пиковой точке;

· в минимальной точке;

· в телефонной точке;

· при 100% глубине модуляции.

Глубина модуляции анодного напряжения m = 1 в соответствии с техническим заданием.

Принципиальная схема оконечного каскада приведена на рисунке 3.1.

Рисунок 3.1 Принципиальная схема оконечного каскада.

Напряжение анодного питания для режима телефонной точки обычно выбирается как:

Угол отсечки выбирается в пределах и = 80?- 90?. В данном случае примем угол отсечки равным 90?.

3 .1 Расчет оконечного каскада(ОК) в максимальной точке

Расчет оконечного каскада в максимальной точке производится по методике изложенной в и .

Напряжение анодного питания и питания экранирующей сетки:

Е а max =E a . т (1+m)=16 кВ

Коэффициент использования анодного напряжения в граничном режиме

Амплитудное напряжение на аноде:

U a max = E amax о max =15.7 кВ

Амплитуда первой гармоники анодного тока:

I a 1 max =2=69.2 А

Амплитуда импульса анодного тока

I amm == 138.4 A

Эквивалентное сопротивление анодной нагрузки:

Верхний угол отсечки определяется из уравнения

Откуда получаем = 0.31 рад = 18 0

Постоянная составляющая анодного тока с учетом усеченности вершины импульса

Мощность, потребляемая анодной цепью

Мощность рассеиваемая на аноде

КПД анодной цепи в максимальном режиме

Амплитуда напряжения возбуждения в цепи управляющей сетки и напряжение смещения

Сопротивление автоматического смещения

где, = 71.2 0 , ? 0.66

Составляющие сеточного тока

где коэффициенты и, учитывающие несинусоидальность импульса тока, принимаются равными? 0.66, ? 0.75

Мощности, потребляемые от предыдущего каскада ПК и источника смещения

Мощность, рассеиваемая на управляющей сетке

3 .2 Расчет оконечного каскада(ОК) в минимальной точке

Расчет режима минимальной точки проводится по методикам, изложенным в - . Режим минимальной точки характерен малыми напряжениями на аноде. В области e a >0 увеличивается напряженность режима и несколько искривляется МХ. Для ослабления этих явлений в цепь тока включают сопротивления автоматического смещения R c ..

Расчет параметров минимального режима выполняется только для цепи управляющей сетки, . Исходными данными для этого расчета являются U c max , E c 0 , S, R c . .

Для нахождения параметров сеточного тока, по методике, изложенной в найдем из уравнения

Потребляемые мощности от источника смещения и от ПК.

3 .3 Расчет оконечного каскада(ОК) в телефонной точке

Расчет режима телефонной точки проводится по методикам, изложенным в и .

Составляющие анодного тока

Анодное напряжение и амплитуда напряжения на нагрузке

Потребляемая и отдаваемая мощности

3.4 Расчет оконечного каскада(ОК) в режиме модуляции

Расчет ОК в режиме модуляции проводится по методике, изложенной в и .

Средняя, потребляемая анодной цепью мощность

Мощность, доставляемая модуляционным устройством

Средняя мощность, отдаваемая лампами ОК

Средняя мощность, рассеиваемая на аноде.

Средняя мощность, рассеиваемая на управляющей сетке

4 . Расчет предоконечного каскада

ЭП для предоконечного каскада выбирается по следующему правилу: по справочным таблицам, приведенным в находится коэффициент усиления мощности N p = 30 .. 50. Примем N p = 50. Тогда мощность предыдущего каскада, необходимая для возбуждения ОК составляет

Для данной мощности подходит лампа ГУ - 39 Б, у которой P ном = 13 кВт . Характеристики ГУ 39 Б приведены в приложении 2.

В качестве цепи согласования ПОК и ОК может быть применена П цепочка .

5 . Р асчет модуляционного устройства

ММУ реализовано с использованием усилителя класса D. Принцип работы данного ММУ подробно описан в и . Двухтактный усилитель класса D предназначен для усиления модулирующего сигнала. Для подачи постоянной составляющей I a 0т к ОК служит отдельный источник питания с напряжением Е ат и дроссель L d 4 . Модулирующее напряжение U Щ подается к широтно - импульсному модулятору и последующему импульсному усилителю и далее к лампе V 2 . Управление второй лампой V 1 производиться напряжением, падающим на сопротивление R 1 от анодного тока лампы V 2 .

Принципиальная схема данного устройства приведена на рисунке 5.1.

Рисунок 5.1 Принципиальная схема ММУ с двухтактным усилителем класса D.

К преимуществам данной схемы относятся:

· существенное увеличение КПД усилителя, вследствие того, что лампы каскада работают в ключевом режиме, а постоянная составляющая тока I a 0 т ОК проходит через дроссель с малым сопротивлением обмотки;

· постоянный КПД усилителя при разных уровнях усиливаемого сигнала (при рациональном выборе ламп, КПД в таком усилителе может достигать 95% - 97%) ;

· отсутствие тяжелого, громоздкого, дорогостоящего модуляционного трансформатора.

К недостаткам данной схемы можно отнести:

· необходимость тщательной регулировки управления лампами, исключающей их одновременное открытие, что привело бы к замыканию источника питания 2Е а.

Диоды VD 1 и VD 2 предназначены для предотвращения прерывания тока в катушке L d 2 в моменты переключения ламп.

Т.к расчет параметров режима ОК выполнен, то определяется

Исходя из рассчитанных параметров выбирается лампа ГУ- 66 Б .

Диоды VD1 и VD2 выбираются по следующим параметрам:

Обратное напряжение E обр Е п,

Максимальный импульсный ток I D max = 38 А

Прямое сопротивление открытого диода r D - желательно возможно меньше. Номинал индуктивности дросселя фильтра L d 1 выбирается в несколько Генри. L d 1 = 5 Гн.

Конденсатор C 1 выбирается из условия тогда C 1 =253 пФ

Фильтр L d 2 , L d 3 , C 2 , C 3 выполнен в виде полузвена L d 2 C 2 по Баттерворту. Следовательно

Разделительный конденсатор C 4 выбирается из условия

Тогда С 4 = 688 нФ.

выбирается из условия Тогда можно положить

Сопротивление R 1 выбирается таким образом, чтобы выполнялось неравенство

где напряжение отсечки анодного тока ламп VL1 и VL2.

Таким образом R 1 = 150 Ом.

Тактовая частота f т выбирается из условия f т =(5..8)F в. Выбираем f т = 70 кГц.

6 . Ра счет выходной контурной системы

Расчет выходной колебательной системы проводится по методике, изложенной в и .

Назначение выходных колебательных систем в радиопередатчиках заключается в выполнении следующих функций :

· согласование активного сопротивления R A антенного фидера с необходимым для нормальной работы выходной ступени эквивалентным сопротивлением R э нагрузки в анодной цепи;

· компенсация реактивного сопротивления X A антенны или фидера с тем, чтобы ВКС работала на активную нагрузку и отдавала в антенну наибольшую мощность;

· фильтрация гармоник, вырабатываемых электронными приборами в выходных каскадах.

Для выбора конструкции ВКС вычислим необходимую фильтрацию

По графику зависимости з ВКС (Ф необх) определяется конструкция выходной колебательной системы. Для з ВКС =0.92 и Ф необх =2.1 10 3 в конструкция ВКС будет иметь вид (рисунок 6.1):

Рисунок 6.1 Принципиальная схема выходной колебательной системы.

Максимальное и минимальное входное сопротивление фидера

Расчет элементов ВКС проводится по методике, изложенной в .

Тогда для первой П - цепи имеем

Для второй П цепочки

Тогда номиналы элементов ВКС должны изменяться в пределах

7 . Заключение

В результате проделанной работы в соответствии с техническим заданием был спроектирован радиовещательный передатчик с амплитудной модуляцией. Произведен расчет ОК, модуляционного устройства и выходной контурной системы и выбраны элементы для построения данных устройств. ММУ выполнено по схеме с двухтактным усилителем класса D, что способствует увеличению КПД усилителя и упрощению его схемы. Для согласования активного сопротивления антенного фидера с необходимым для нормальной работы выходной ступени эквивалентным сопротивлением нагрузки в анодной цепи, а также для компенсации реактивного сопротивления фидера и для фильтрации гармоник, вырабатываемых электронными приборами в выходных каскадах применена выходная контурная система с двойным П-образным контуром.

Приложение 1

Характеристики генераторного триода ГУ 66 Б

Генераторный триод ГУ-66Б предназначен для усиления мощности на частотах до 30 МГц в стационарных передающих радиотехнических устройствах как в схемах с общей сеткой, так и в схемах с общим катодом.

Общие сведения

Катод - вольфрамовый торированный карбидированный прямого накала. Оформление - металлокерамическое с кольцевыми выводами катода и сетки. Охлаждение - принудительное: анода - водяное; ножки - воздушное. Высота не более 420 мм. Диаметр не более 211 мм. Масса не более 23 кг.

Электрические параметры

Напряжение накала, В

Ток накала, А

Крутизна характеристики, мА/В

Коэффициент усиления (при напряжении анода 4 кВ, токе анода 8 А)

Межэлектродные ёмкости, пФ, не более

выходная

проходная,

Наибольшее напряжение накала

Наибольший пусковой ток накала, А

Наибольшая мощность рассеивания, кВт

Наибольшая температура ножки и спаев керамики с металлом, °С

радиовещательный передатчик амплитудный модуляция трансформатор

Приложение 2

Характеристики ГУ - 39 Б

Допустимые воздействующие факторы при эксплуатации

Температура окружающей среды, С 0

Относительная влажность воздуха при температуре до 25 °С, %

Электрические параметры

Напряжение накала, В

Ток накала, А

Крутизна характеристики, мА/В

Мощность выходная кВт, не менее

Максимальные предельно допустимые эксплуатационные данные

Наибольшее напряжение анода (постоянное), кВ

Наибольшая рабочая частота, МГц

Подобные документы

    Структурная схема передатчика, расчет оконечного каскада. Эквивалентная схема входного сопротивления транзистора в схеме с ОЭ. Расчёт согласующего устройства, выходного фильтра. Конструктивный расчёт катушек индуктивности. Расчет блокировочных элементов.

    курсовая работа , добавлен 09.05.2012

    Разработка радиопередатчика для радиовещания на ультракоротких волнах (УКВ) с частотной модуляцией (ЧМ). Подбор передатчика-прототипа. Расчет структурной схемы. Электрический расчет нагрузочной системы передатчика, режима предоконечного каскада на ЭВМ.

    курсовая работа , добавлен 12.10.2014

    Проектирование связного радиопередающего устройства с частотной модуляцией (ЧМ). Структурные схемы передатчика с прямой и косвенной ЧМ. Расчет оконечного каскада, коллекторной и входной цепей. Расчет цепи согласования оконечного каскада с нагрузкой.

    курсовая работа , добавлен 21.07.2010

    Обоснование функциональной схемы передатчика. Расчет и определение транзистора для оконечной ступени передатчика. Расчет оконечного каскада, входного сопротивления антенны, цепи согласования. Определение коллекторной цепи генератора в критическом режиме.

    курсовая работа , добавлен 14.04.2011

    Характеристика и предназначение радиовещательного приемника сигналов с амплитудной модуляцией, структурная схема. Особенности настройки приемника, использование варикапов. Способы расчета напряжения шума приемника. Анализ расчет детектора радиосигналов.

    курсовая работа , добавлен 21.04.2012

    Обоснование структурной схемы. Электрический расчет. Выбор усилительного полупроводникового прибора. Расчет выходного фильтра. Выбор стандартных номиналов. Электрическая схема оконечного мощного каскада связного передатчика с частотной модуляцией.

    курсовая работа , добавлен 14.11.2008

    Каналы утечки речевой информации. Методы формирования и преобразования сигналов. Характеристика радиомикрофона с амплитудной модуляцией. Признаки и классификация закладных устройств. Сущность и принцип действия амплитудной модуляции гармонической несущей.

    реферат , добавлен 21.01.2013

    Разработка структурной схемы передатчика с базовой модуляцией, числа каскадов усиления мощности, оконечного каскада, входной цепи транзистора, кварцевого автогенератора, эмиттерного повторителя. Эквивалентное входное сопротивление и емкость транзистора.

    курсовая работа , добавлен 17.07.2010

    Выбор способа получения частотной модуляцией. Расчет транзисторного автогенератора на основе трехточки. Выбор структурной схемы возбудителя. Электрический расчет режимов каскадов тракта передатчика. Проектирование широкодиапазонной выходной цепи связи.

    курсовая работа , добавлен 29.03.2014

    Расчет цепей смещения и питания транзистора. Выбор радиодеталей для цепей связи, фильтрации, питания для схемы оконечного каскада. Расчет принципиальной схемы передатчика. Электрический расчет генератора, управляемого напряжением с частотной модуляцией.

Название : Проектирование радиопередающих устройств.

Рассмотрены вопросы проектирования радиопередающих устройств различного диапазона волн и мощностей. Дана методика расчета связных радиовещательных и телевизионных радиопередатчиков, а также радиопередатчиков радиорелейной и космической связи Изложены особенности проектирования транзисторных каскадов радиопередающих устройств и возбудителей различного диапазона частот. Книга рассчитана на студентов ВУЗов связи, а также может быть полезна для разработчиков радиотехнической аппаратуры.



Предисловие. 6
Глава 1. Введение
1.1. Общие сведения. 7
1.2. Электровакуумные приборы для радиопередающих устройств. 8
1.3. Общие рекомендации по построению структурной схемы тракта высокой частоты передатчика. 16
Список литературы. 19
Глава 2. Радиопередатчики длинных и средних волн
2.1. Типы и назначение передатчиков. 21
2.2. Основные требования к передатчикам. 22
2.3. Структурные схемы. 25
2.4. Расчет системы выходных контуров. 33
2.5. Особенности принципиальных схем выходной ступени. 36
Список литературы. 41
Глава 3. Проектирование передатчиков коротковолнового диапазона
3.1. Типы передатчиков и требования к ним. 42
3.2. Структурные схемы. 45
3.3. Выбор режима и расчет лампового резонансного усилителя. 52
3.4. Расчет условий устойчивости и коэффициента усиления по мощности резонансных каскадов. 56
3.5. Ступени широкополосного усиления. 62
3.6. Проектирование широкополосных трансформаторов KB диапазона. 70
3.7. Колебательные системы. 84
3.8. Фильтрация гармоник. 94
Список литературы. 106
Глава 4. Расчет режимов генераторов с амплитудной модуляцией
4.1. Краткие сведения об амплитудной модуляции. 109
4.2. Модуляция на управляющую сетку смещением. 110
4.3. Расчет усилителей модулированных колебаний. 113
4.4. Модуляция на пентодную сетку. 114
4.5. Анодная модуляция. 115
Список литературы. 121
Глава 5. Модуляторы связных и радиовещательных передатчиков
5.1. Модуляторы связных передатчиков. 122
5.2. Модуляторы радиовещательных передатчиков. 127
5.3. Отрицательная обратная связь в модуляторах. 140
Список литературы. 143
Глава 6. Однополосные передатчики коротковолнового диапазона
6.1. Общие сведения. 144
6.2. Структурные схемы однополосных передатчиков. 148
6.3. Групповой сигнал в тракте однополосного передатчика. 149
6.4. Порядок проектирования передатчика с ОМ. 151
6.5. Технический расчет выходного каскада. 156
6.6. Расчет промышленного КПД передатчика с ОМ. 164
Список литературы. 165
Глава 7. Проектирование оконечных каскадов транзисторных передатчиков
7.1. Введение. 167
7.2. Генераторный транзистор и его параметры. 168
7.3. Классификация транзисторных генераторов. 174
7.4. Генераторы в недонапряженном и критическом режимах. 178
7.5. Генераторы в ключевом и перенапряженном режимах. 194
7.6. Особенности проектирования промежуточных каскадов. 208
7.7. Особенности проектирования генераторов при коллекторной амплитудной модуляции. 209
7.8. Проектирование цепей связи. 212
7.9. Расчет теплового режима. 213
Список литературы. 216
Глава 8. Возбудители
8.1. Вводные замечания. 218
8.2. Выбор и обоснование функциональной схемы датчика опорных частот. 219
8.3. Формирование видов работ в возбудителе. 226
8.4. Выбор частот возбудителя. 230
Список литературы. 232
Глава 9. Проектирование и расчет колебательных систем усилителей метрового, дециметрового и сантиметрового диапазонов
9.1. Особенности конструкций усилительных приборов. 234
9.2. Принципы построения колебательных систем усилителей. 242
9.3. Колебательные системы с использованием однородных линий. 249
9.4. Колебательные системы с использованием неоднородных линий. 266
9.5. Цепи связи. 274
9.6. Цепи питания усилителя. 292
Список литературы. 294
Глава 10. Вещательные передатчики изображения диапазонов ОВЧ и УВЧ
10.1. Общие сведения. 296
10.2. Составление общей структурной схемы. 297
10.3. Построение и расчет тетрадных каскадов УМК. 310
10.4. Построение и расчет тракта широкополосного транзисторного УМК. 320
10.5. Построение и расчет тракта модулированных колебаний на промежуточной частоте. 325
Список литературы. 333
Глава 11. Передатчики ЧМ вещания и звукового сопровождения телевизионных программ
11.1. Основные технические характеристики передатчиков ЧМ вещания и звукового сопровождения. 334
11.2. Составление структурных схем передатчиков. 334
11.3. Проектирование каскадов тракта усиления ВЧ. 341
11.4. Проектирование частотных модуляторов на варикапах. 345
Список литературы. 349
Глава 12. Передатчики на клистронах для тропосферной и космической вязи и телевидения
12.1. Основные технические характеристики передатчиков тропосферных и космических линий связи. 350
12.2. Составление структурных схем. 351
12.3. Выбор типа клистрона. 353
12.4. Расчет электрических и геометрических параметров клистрона. 355
12.5. Расчет режима усилителя. 363
12.6. Поверочный расчет частотных характеристик. 369
12.7. Коэффициент усиления. Мощность возбудителя. 370
12.8. Составление принципиальной схемы клистронного усилителя. 371
12.9. Проектирование клистронных усилителей телевизионной радиостанции. 373
12.10. Расчет режимов клистронного усилителя передатчика, изображения. 377
12.11. Расчет режима клистронного усилителя передатчика звукового сопровождения. 382
12.12. Построение схемы оконечных каскадов телевизионных клистронных усилителей. 384
Список литературы. 386
Глава 13. Усилители и автогенераторы УВЧ и СВЧ на металлокерамических лампах
13.1. Вводные замечания. 387
13.2. Схемы усилителей и автогенераторов. 387
13.3. Расчет режима усилителя мощности. 389
13.4. Пример расчета режима и колебательной системы усилителя. 395
13.5. Усиление модулированных колебаний. 406
13.6. Расчет режима автогенератора. 408
Список литературы. 410
Глава 14. Передатчики радиорелейной связи
14.1. Вводные замечания. 411
14.2. Основные требования к передатчикам РРЛ с частотной модуляцией. 412
14.3. Построение структурных схем ЧМ РРЛ передатчиков. 415
14.4. Проектирование частотных модуляторов на варикапах. 419
14.5. Проектирование частотных модуляторов на отражательных клистронах. 422
14.6. Проектирование СВЧ смесителей передатчиков. 423
14.7. Расчет полосовых СВЧ фильтров. 426
Список литературы. 426
Приложение 1. 427
Приложение 2.

Электровакуумные приборы для передающих устройств .

В радиопередающих устройствах используются разнообразные электронные, полупроводниковые и ионные приборы. Ассортимент их постоянно обновляется: разрабатываются принципиально новые, совершенствуются существующие, изымаются из практики устаревшие.

Целесообразность применения ламп или транзисторов и их конкретные типы для каждого каскада определяются технико-экономическим расчетом. Общая тенденция в настоящее время такова.

В мощных каскадах передатчиков (за исключением самых длинноволновых) в основном применяются электронные радиолампы и специальные электронные приборы СВЧ. В маломощных каскадах все более широко применяются полупроводниковые приборы.
Использование в передающих устройствах маломощных генераторных и приемно-усилительных ламп оправдано только в том случае, если доказана невозможность или явная нецелесообразность использования транзисторов, полупроводниковых диодов и т. п. Например, применение приемно-усилительных ламп оказывается неизбежным в условиях высокой температуры окружающей среды, при большой разнице максимальной и минимальной температуры, при наличии проникающей радиации и т. п.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Проектирование радиопередающих устройств - Шахгильдян В.В. - fileskachat.com, быстрое и бесплатное скачивание.

Возбудители передатчиков - это достаточно сложные устройства. В их состав могут входить синтезаторы частот, блок формирования видов работ, блок переноса, буферный усилитель. На рис. 2.1 представлена обобщенная структурная схема возбудителя, включающая в себя все перечисленные блоки.

В задачу возбудителя входят формирование высокочастотного сигнала в определенном диапазоне частот, обеспечение требуемого характера перестройки частоты по рабочему диапазону, требуемой стабильности частоты колебаний, формирование различных видов работ. На практике имеет место большое разнообразие способов построения возбудителя. Существенное влияние на выбор способа построения возбудителя могут оказать требования по быстродействию переключения рабочей частоты, уровню побочных продуктов в спектре выходного сигнала, видам работ, которые формируются в возбудителе.

Рис. 2.1. Структурная схема возбудителя

Под видами работ, которые формируются в возбудителе, подразумеваются различные виды модуляции (манипуляции) высокочастотного сигнала. Их достаточно много. Прежде всего, это угловая модуляция, однополосная модуляция, амплитудная модуляция и другие. Некоторые из них являются основными, другие – вспомогательными для определенных видов радиопередатчиков. Модуляция осуществляется на фиксированных поднесущих частотах в специальном блоке, включенном в состав возбудителя, который именуется блоком формирования видов работ (БФВР). Высокочастотные сигналы, сформированные на фиксированных поднесущих, с помощью специального блока, называемого блоком переноса (БП), перемещают в рабочую область частот.

Выходным устройством возбудителя является буферный усилитель (БУ). Отличительной особенностью БУ от других типов усилителей является высокое входное сопротивление. Высокое входное сопротивление БУ обеспечивает развязку возбудителя с последующим трактом усиления ВЧ сигнала.

Главной частью возбудителя в современных передатчиках является синтезатор частоты. Синтезатор частоты формирует сетку высокостабильных частот. Сетка частот заменяет непрерывный рабочий диапазон частот дискретными частотами с шагом F, который называется шагом сетки. Шаг сетки может быть от долей Гц до десятков МГц. В некоторых системах связи УКВ диапазона за шаг сетки принята величина 25 кГц. Такой шаг позволяет на соседних частотах сетки организовать независимые каналы связи без взаимных помех друг другу (принцип частотного разделения каналов).

Любую частоту сетки можно представить в виде

где - коэффициент, который можно менять. Требуемая частота сетки устанавливается командой управления (КУ), поступающей с внешнего устройства, которая устанавливает требуемое значение коэффициента .

Кроме того, синтезатор может вырабатывать дополнительно одну или несколько фиксированных поднесущих частот для БФВР, на которых осуществляется модуляция.

Рабочая частота формируется на выходе блока переноса возбудителя. В передатчиках под блоком переноса понимают смеситель, снабженный полосовым фильтром. Смеситель - это нелинейное устройство. При поступлении на входы смесителя сигналов с разными частотами и на его выходе появляется сигнал, спектр которого содержит гармоники вида

где и - произвольные целые числа. Основными комбинационными частотами является частоты, когда и : - при переносе сигнала вверх и - при переносе сигнала вниз. В передатчиках чаще используется первый вариант, в приемниках - второй вариант. Рабочая частота передатчика образуется путем суммирования сигнала с частотой сетки и сигнала с одной из фиксированных частот , поступающего с БФВР:

Полосовой фильтр блока переноса очищает выходной сигнал от гармоник и других комбинационных спектральных составляющих. Отфильтрованный сигнал поступает на вход БУ и далее на вход усилителя мощности ВЧ сигнала.

В передатчиках систем связи относительно малой мощности чаще всего используется один вид модуляции, например угловая модуляция. При этом БФВР получается достаточно простым. Для его работы в синтезаторе формируется только одна дополнительная поднесущая частота. Ниже рассматривается именно такой случай. Однако в целом предлагаемая методика разработки возбудителя приемлема для любых передатчиков.


Разработка возбудителя заключается в выборе и расчете его отдельных составных частей.

2.1. Синтезаторы частоты

Если передатчик разрабатывается для работы в диапазоне частот, а требуемое значение нестабильности рабочей частоты находится на уровне кварцевых автогенераторов (АГ), то в возбудителе передатчика наиболее целесообразно использовать синтезатор частоты.

Основные параметры синтезаторов

1. Диапазон рабочих частот синтезатора………………...

2. Общее число частот, вырабатываемое синтезатором,…………..

3. Число дополнительных фиксированных частот

Мощность колебаний на выходе синтезатора составляет обычно доли мВт. В настоящее время формирование сетки частот в синтезаторах осуществляется двумя основными методами:

1. Методом прямого синтеза.

2. Методом обратного (косвенного) синтеза.

Метод прямого синтеза

Метод прямого синтеза базируется на формировании сетки частот за счет использования простейших арифметических операций – умножения, деления, суммирования, вычитания. По виду использованной элементной базы синтезаторы прямого метода синтеза могут быть аналоговыми, цифровыми и комбинированными.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 . Техническое задание

Спроектировать радиовещательный передатчик с АМ (ПРВАМ) со следующими параметрами:

· Мощность в антенне (нагрузке) P ~ =100 кВт;

· Волновое сопротивление фидера с Ф =150 Ом;

· КПД фидера з ф = 0.80;

· Коэффициент бегущей волны КБВ = 0.8;

· Максимальный индекс модуляции m = 1;

· Диапазон рабочих частот f min - f max , 0.1 - 0.3МГц;

· Диапазон частот модуляции ДF = 50 10000 Гц;

· несущая частота f 0 =200 кГц.

Анализ технического задания:

Радиовещательные передатчики (ПРВ) с АМ применяемые в диапазонах длинных, средних и коротких волн по своим параметрам должны соответствовать ГОСТ 1392468. В ламповых вариантах передатчиков для получения АМ сигнала заданной мощности наиболее распространены анодная, анодно-экранная или комбинированная (по нескольким электродам) модуляция в оконечном каскаде, реже применяется усиление модулированных колебаний (УМК).

В рамках данной работы проведены следующие расчеты:

· оконечного каскада в пиковой, минимальной и телефонной точках, а также при 100% -й глубине модуляции;

· модулирующего устройства и электрических параметров его элементов; трансформатора, дросселей, блокировочных конденсаторов;

· выходной колебательной системы;

2. Выбор способа постр оения проектируемого устройства

Для реализации данного устройства был выбран вариант реализации с анодной модуляцией вследствие ее высокой энергоэффективности, хорошей линейности и широкого применения в радиовещательных передатчиках , .Структурная схема проектируемого устройства представлена на рисунке 1.

Рисунок 2.1. Структурная схема проектируемого радиовещательного передатчика с АМ.

Ориентировочный расчет радиопередатчика с АМ по структурной схеме

Согласно техническому заданию, передатчик должен обладать следующими параметрами: P ~ = 100 кВт;

индекс модуляции m = 1;

диапазон рабочих частот f min f max = 0.1 0.3 МГц.

Исходя из заданных выше параметров произведем ориентировочный расчет элементов радиопередатчика.

Пиковая мощность в антенне при этом составит:

Мощности P 1 T и P 1 max , отдаваемые приборами ОК определяются формулами:

где ориентировочный КПД выходной колебательной системы. выбранный из таблицы, приведенной в и , КПД фидера.

Тогда P 1 T = 136 кВт, P 1 max = 544 кВт.

В связи с тем, что в ОК реализована анодная модуляция то номинальная мощность ЭП выбирается по правилу P 1ном?2P 1 T = 272 кВт (номинальная мощность генераторных ламп).

Т.к. при разработке ОК использовалась двухтактная схема, то P 1ном лампы = .

Выбор типа лампы осуществляется по таким параметрам как P 1ном ламы и максимальной рабочей частоте f max .

По справочным таблицам, представленным в и была выбрана лампа ГУ 66 Б, имеющая следующие параметры : E a ном = 10 кВ; S = 0.16 А/В, P ном справ = 150 кВт.

Описание лампы ГУ 66 Б приведено в приложении 1.

Принципиальная схема проектируемого радиовещательного передатчика представлена на рисунке 2.2.

Рисунок 2.2 - Принципиальная схема проектируемого передатчика с АМ.

3 . Расчет оконечного каскада (ОК)

В данном пункте производится расчет ОК в следующих режимах:

· в пиковой точке;

· в минимальной точке;

· в телефонной точке;

· при 100% глубине модуляции.

Глубина модуляции анодного напряжения m = 1 в соответствии с техническим заданием.

Принципиальная схема оконечного каскада приведена на рисунке 3.1.

Рисунок 3.1 Принципиальная схема оконечного каскада.

Напряжение анодного питания для режима телефонной точки обычно выбирается как:

Угол отсечки выбирается в пределах и = 80?- 90?. В данном случае примем угол отсечки равным 90?.

3 .1 Расчет оконечного каскада(ОК) в максимальной точке

Расчет оконечного каскада в максимальной точке производится по методике изложенной в и .

Напряжение анодного питания и питания экранирующей сетки:

Е а max =E a . т (1+m)=16 кВ

Коэффициент использования анодного напряжения в граничном режиме

Амплитудное напряжение на аноде:

U a max = E amax о max =15.7 кВ

Амплитуда первой гармоники анодного тока:

I a 1 max =2=69.2 А

Амплитуда импульса анодного тока

I amm == 138.4 A

Эквивалентное сопротивление анодной нагрузки:

Верхний угол отсечки определяется из уравнения

Откуда получаем = 0.31 рад = 18 0

Постоянная составляющая анодного тока с учетом усеченности вершины импульса

Мощность, потребляемая анодной цепью

Мощность рассеиваемая на аноде

КПД анодной цепи в максимальном режиме

Амплитуда напряжения возбуждения в цепи управляющей сетки и напряжение смещения

Сопротивление автоматического смещения

где, = 71.2 0 , ? 0.66

Составляющие сеточного тока

где коэффициенты и, учитывающие несинусоидальность импульса тока, принимаются равными? 0.66, ? 0.75

Мощности, потребляемые от предыдущего каскада ПК и источника смещения

Мощность, рассеиваемая на управляющей сетке

3 .2 Расчет оконечного каскада(ОК) в минимальной точке

Расчет режима минимальной точки проводится по методикам, изложенным в - . Режим минимальной точки характерен малыми напряжениями на аноде. В области e a >0 увеличивается напряженность режима и несколько искривляется МХ. Для ослабления этих явлений в цепь тока включают сопротивления автоматического смещения R c ..

Расчет параметров минимального режима выполняется только для цепи управляющей сетки, . Исходными данными для этого расчета являются U c max , E c 0 , S, R c . .

Для нахождения параметров сеточного тока, по методике, изложенной в найдем из уравнения

Потребляемые мощности от источника смещения и от ПК.

3 .3 Расчет оконечного каскада(ОК) в телефонной точке

Расчет режима телефонной точки проводится по методикам, изложенным в и .

Составляющие анодного тока

Анодное напряжение и амплитуда напряжения на нагрузке

Потребляемая и отдаваемая мощности

3.4 Расчет оконечного каскада(ОК) в режиме модуляции

Расчет ОК в режиме модуляции проводится по методике, изложенной в и .

Средняя, потребляемая анодной цепью мощность

Мощность, доставляемая модуляционным устройством

Средняя мощность, отдаваемая лампами ОК

Средняя мощность, рассеиваемая на аноде.

Средняя мощность, рассеиваемая на управляющей сетке

4 . Расчет предоконечного каскада

ЭП для предоконечного каскада выбирается по следующему правилу: по справочным таблицам, приведенным в находится коэффициент усиления мощности N p = 30 .. 50. Примем N p = 50. Тогда мощность предыдущего каскада, необходимая для возбуждения ОК составляет

Для данной мощности подходит лампа ГУ - 39 Б, у которой P ном = 13 кВт . Характеристики ГУ 39 Б приведены в приложении 2.

В качестве цепи согласования ПОК и ОК может быть применена П цепочка .

5 . Р асчет модуляционного устройства

ММУ реализовано с использованием усилителя класса D. Принцип работы данного ММУ подробно описан в и . Двухтактный усилитель класса D предназначен для усиления модулирующего сигнала. Для подачи постоянной составляющей I a 0т к ОК служит отдельный источник питания с напряжением Е ат и дроссель L d 4 . Модулирующее напряжение U Щ подается к широтно - импульсному модулятору и последующему импульсному усилителю и далее к лампе V 2 . Управление второй лампой V 1 производиться напряжением, падающим на сопротивление R 1 от анодного тока лампы V 2 .

Принципиальная схема данного устройства приведена на рисунке 5.1.

Рисунок 5.1 Принципиальная схема ММУ с двухтактным усилителем класса D.

К преимуществам данной схемы относятся:

· существенное увеличение КПД усилителя, вследствие того, что лампы каскада работают в ключевом режиме, а постоянная составляющая тока I a 0 т ОК проходит через дроссель с малым сопротивлением обмотки;

· постоянный КПД усилителя при разных уровнях усиливаемого сигнала (при рациональном выборе ламп, КПД в таком усилителе может достигать 95% - 97%) ;

· отсутствие тяжелого, громоздкого, дорогостоящего модуляционного трансформатора.

К недостаткам данной схемы можно отнести:

· необходимость тщательной регулировки управления лампами, исключающей их одновременное открытие, что привело бы к замыканию источника питания 2Е а.

Диоды VD 1 и VD 2 предназначены для предотвращения прерывания тока в катушке L d 2 в моменты переключения ламп.

Т.к расчет параметров режима ОК выполнен, то определяется

Исходя из рассчитанных параметров выбирается лампа ГУ- 66 Б .

Диоды VD1 и VD2 выбираются по следующим параметрам:

Обратное напряжение E обр Е п,

Максимальный импульсный ток I D max = 38 А

Прямое сопротивление открытого диода r D - желательно возможно меньше. Номинал индуктивности дросселя фильтра L d 1 выбирается в несколько Генри. L d 1 = 5 Гн.

Конденсатор C 1 выбирается из условия тогда C 1 =253 пФ

Фильтр L d 2 , L d 3 , C 2 , C 3 выполнен в виде полузвена L d 2 C 2 по Баттерворту. Следовательно

Разделительный конденсатор C 4 выбирается из условия

Тогда С 4 = 688 нФ.

выбирается из условия Тогда можно положить

Сопротивление R 1 выбирается таким образом, чтобы выполнялось неравенство

где напряжение отсечки анодного тока ламп VL1 и VL2.

Таким образом R 1 = 150 Ом.

Тактовая частота f т выбирается из условия f т =(5..8)F в. Выбираем f т = 70 кГц.

6 . Ра счет выходной контурной системы

Расчет выходной колебательной системы проводится по методике, изложенной в и .

Назначение выходных колебательных систем в радиопередатчиках заключается в выполнении следующих функций :

· согласование активного сопротивления R A антенного фидера с необходимым для нормальной работы выходной ступени эквивалентным сопротивлением R э нагрузки в анодной цепи;

· компенсация реактивного сопротивления X A антенны или фидера с тем, чтобы ВКС работала на активную нагрузку и отдавала в антенну наибольшую мощность;

· фильтрация гармоник, вырабатываемых электронными приборами в выходных каскадах.

Для выбора конструкции ВКС вычислим необходимую фильтрацию

По графику зависимости з ВКС (Ф необх) определяется конструкция выходной колебательной системы. Для з ВКС =0.92 и Ф необх =2.1 10 3 в конструкция ВКС будет иметь вид (рисунок 6.1):

Рисунок 6.1 Принципиальная схема выходной колебательной системы.

Максимальное и минимальное входное сопротивление фидера

Расчет элементов ВКС проводится по методике, изложенной в .

Тогда для первой П - цепи имеем

Для второй П цепочки

Тогда номиналы элементов ВКС должны изменяться в пределах

7 . Заключение

В результате проделанной работы в соответствии с техническим заданием был спроектирован радиовещательный передатчик с амплитудной модуляцией. Произведен расчет ОК, модуляционного устройства и выходной контурной системы и выбраны элементы для построения данных устройств. ММУ выполнено по схеме с двухтактным усилителем класса D, что способствует увеличению КПД усилителя и упрощению его схемы. Для согласования активного сопротивления антенного фидера с необходимым для нормальной работы выходной ступени эквивалентным сопротивлением нагрузки в анодной цепи, а также для компенсации реактивного сопротивления фидера и для фильтрации гармоник, вырабатываемых электронными приборами в выходных каскадах применена выходная контурная система с двойным П-образным контуром.

Приложение 1

Характеристики генераторного триода ГУ 66 Б

Генераторный триод ГУ-66Б предназначен для усиления мощности на частотах до 30 МГц в стационарных передающих радиотехнических устройствах как в схемах с общей сеткой, так и в схемах с общим катодом.

Общие сведения

Катод - вольфрамовый торированный карбидированный прямого накала. Оформление - металлокерамическое с кольцевыми выводами катода и сетки. Охлаждение - принудительное: анода - водяное; ножки - воздушное. Высота не более 420 мм. Диаметр не более 211 мм. Масса не более 23 кг.

Электрические параметры

Напряжение накала, В

Ток накала, А

Крутизна характеристики, мА/В

Коэффициент усиления (при напряжении анода 4 кВ, токе анода 8 А)

Межэлектродные ёмкости, пФ, не более

выходная

проходная,

Наибольшее напряжение накала

Наибольший пусковой ток накала, А

Наибольшая мощность рассеивания, кВт

Наибольшая температура ножки и спаев керамики с металлом, °С

радиовещательный передатчик амплитудный модуляция трансформатор

Приложение 2

Характеристики ГУ - 39 Б

Допустимые воздействующие факторы при эксплуатации

Температура окружающей среды, С 0

Относительная влажность воздуха при температуре до 25 °С, %

Электрические параметры

Напряжение накала, В

Ток накала, А

Крутизна характеристики, мА/В

Мощность выходная кВт, не менее

Максимальные предельно допустимые эксплуатационные данные

Наибольшее напряжение анода (постоянное), кВ

Наибольшая рабочая частота, МГц

Размещено на Allbest.ru

Подобные документы

    Структурная схема передатчика, расчет оконечного каскада. Эквивалентная схема входного сопротивления транзистора в схеме с ОЭ. Расчёт согласующего устройства, выходного фильтра. Конструктивный расчёт катушек индуктивности. Расчет блокировочных элементов.

    курсовая работа , добавлен 09.05.2012

    Разработка радиопередатчика для радиовещания на ультракоротких волнах (УКВ) с частотной модуляцией (ЧМ). Подбор передатчика-прототипа. Расчет структурной схемы. Электрический расчет нагрузочной системы передатчика, режима предоконечного каскада на ЭВМ.

    курсовая работа , добавлен 12.10.2014

    Проектирование связного радиопередающего устройства с частотной модуляцией (ЧМ). Структурные схемы передатчика с прямой и косвенной ЧМ. Расчет оконечного каскада, коллекторной и входной цепей. Расчет цепи согласования оконечного каскада с нагрузкой.

    курсовая работа , добавлен 21.07.2010

    Обоснование функциональной схемы передатчика. Расчет и определение транзистора для оконечной ступени передатчика. Расчет оконечного каскада, входного сопротивления антенны, цепи согласования. Определение коллекторной цепи генератора в критическом режиме.

    курсовая работа , добавлен 14.04.2011

    Характеристика и предназначение радиовещательного приемника сигналов с амплитудной модуляцией, структурная схема. Особенности настройки приемника, использование варикапов. Способы расчета напряжения шума приемника. Анализ расчет детектора радиосигналов.

    курсовая работа , добавлен 21.04.2012

    Обоснование структурной схемы. Электрический расчет. Выбор усилительного полупроводникового прибора. Расчет выходного фильтра. Выбор стандартных номиналов. Электрическая схема оконечного мощного каскада связного передатчика с частотной модуляцией.

    курсовая работа , добавлен 14.11.2008

    Каналы утечки речевой информации. Методы формирования и преобразования сигналов. Характеристика радиомикрофона с амплитудной модуляцией. Признаки и классификация закладных устройств. Сущность и принцип действия амплитудной модуляции гармонической несущей.

    реферат , добавлен 21.01.2013

    Разработка структурной схемы передатчика с базовой модуляцией, числа каскадов усиления мощности, оконечного каскада, входной цепи транзистора, кварцевого автогенератора, эмиттерного повторителя. Эквивалентное входное сопротивление и емкость транзистора.

    курсовая работа , добавлен 17.07.2010

    Выбор способа получения частотной модуляцией. Расчет транзисторного автогенератора на основе трехточки. Выбор структурной схемы возбудителя. Электрический расчет режимов каскадов тракта передатчика. Проектирование широкодиапазонной выходной цепи связи.

    курсовая работа , добавлен 29.03.2014

    Расчет цепей смещения и питания транзистора. Выбор радиодеталей для цепей связи, фильтрации, питания для схемы оконечного каскада. Расчет принципиальной схемы передатчика. Электрический расчет генератора, управляемого напряжением с частотной модуляцией.

Похожие статьи